ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Photometric Redshift Estimates for FR II Radio Galaxies

92   0   0.0 ( 0 )
 نشر من قبل Oleg Verkhodanov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. V. Verkhodanov




اسأل ChatGPT حول البحث

Using the photometric data on FR II radio galaxies obtained in the Big Trio Program and data from other sources, we confirmed the stable correlation between the spectroscopic and photometric redshifts up to z~4 determined from the evolutionary synthetic spectra of elliptical galaxies. This is a confirmation for the theoretical predictions of the existence of a stellar population at high redshifts and its subsequent evolution corresponding to the population of giant elliptical galaxies.



قيم البحث

اقرأ أيضاً

Jet powers in many radio galaxies with extended radio structures appear to exceed their associated accretion luminosities. In systems with very low accretion rates, this is likely due to the very low accretion luminosities resulting from radiatively inefficient accretion flows. In systems with high accretion rates, the accretion flows are expected to be radiatively efficient, and the production of such powerful jets may require an accretion scenario which involves magnetically arrested discs (MADs). However, numerical simulations of the MAD scenario indicate that jet production efficiency is large only for geometrically thick accretion flows and scales roughly with $(H/R)^2$, where $H$ is the disc height and $R$ is the distance from the BH. Using samples of FRII radio galaxies and quasars accreting at moderate accretion rates we show that their jets are much more powerful than predicted by the MAD scenario. We discuss possible origins of this discrepancy, suggesting that it can be related to approximations adopted in MHD simulations to treat optically thick accretion flow within the MAD-zone, or may indicate that accretion disks are geometrically thicker than the standard theory predicts.
The energetic composition of radio lobes in the FR II galaxies $-$ estimated by comparing their radio luminosities with the powers required to inflate cavities in the external medium $-$ seems to exclude the possibility of their energetic domination by protons. Furthermore, if the jets were dominated by the kinetic energy of cold protons, it would be difficult to efficiently accelerate leptons in the jets terminal shocks. Assuming that the relative energy contents of leptons, protons and magnetic fields are preserved across the shocks, the above implies that the large-scale jets should also be energetically dominated by leptons: $P_{rm e,j} gtrsim P_{rm p,j}$. On the other hand, previous studies of small-scale jets in blazars and radio cores suggest a pair content (number of electrons and positrons per proton) of the order of $n_{rm e}/n_{rm p} sim 20$. Assuming further that the particle composition of jets does not evolve beyond the blazar scales, we show that this implies an average random Lorentz factor of leptons in large-scale jets of $bargamma_{rm e,j} gtrsim 70(1+chi_{rm p})(20n_{rm p}/n_{rm e})$, and that the protons should be mildly relativistic with $chi_{rm p} equiv (epsilon_{rm p} + p_{rm p})/rho_{rm p} c^2 lesssim 2$, $p_{rm p}$ the pressure of protons, $epsilon_{rm p}$ the internal energy density of protons, and $rho_{rm p} c^2$ the rest-mass energy density of protons. We derive the necessary conditions for loading the inner jets by electron-positron pairs and proton-electron plasma, and provide arguments that heating of leptons in jets is dominated by magnetic reconnection.
In this paper, the second in a series investigating FR II radio galaxies at low frequencies, we use LOFAR and VLA observations between 117 and 456 MHz in addition to archival data to determine the dynamics and energetics of two radio galaxies, 3C452 and 3C223, through fitting of spectral ageing models on small spatial scales. We provide improved measurements for the physical extent of the two sources, including a previously unknown low surface brightness extension to the northern lobe of 3C223, and revised energetics based on these values. We find spectral ages of $77.05^{+9.22}_{-8.74}$ and $84.96^{+15.02}_{-13.83}$ Myr for 3C452 and 3C223 respectively suggesting a characteristic advance speed for the lobes of around one per cent the speed of light. For 3C452 we show that, even for a magnetic field strength not assumed to be in equipartition, a disparity of factor of approximately 2 exists between the spectral age and that determined from a dynamical standpoint. We confirm that the injection index of both sources (as derived from the lobe emission) remains steeper than classically assumed values even when considered on well resolved scales at low frequencies, but find an unexpected sharp discontinuity between the spectrum of the hotspots and the surrounding lobe emission. We suggest that this discrepancy is due to the absorption of hotspot emission and/or non-homogeneous and additional acceleration mechanisms and, as such, hotspots should not be used in the determination of the underlying initial electron energy distribution.
We built a catalog of 122 FR~II radio galaxies, called FRII{sl{CAT}}, selected from a published sample obtained by combining observations from the NVSS, FIRST, and SDSS surveys. The catalog includes sources with redshift $leq 0.15$, an edge-brightene d radio morphology, and those with at least one of the emission peaks located at radius $r$ larger than 30 kpc from the center of the host. The radio luminosity at 1.4 GHz of the FRII sources covers the range $L_{1.4} sim 10^{39.5} - 10^{42.5}$ $ergs$. The FRII catalog has 90% of low and 10% of high excitation galaxies (LEGs and HEGs), respectively. The properties of these two classes are significantly different. The FRII{sl{CAT}} LEGs are mostly luminous ($-20 gtrsim M_r gtrsim -24$), red early-type galaxies with black hole masses in the range $10^8 lesssim M_{rm BH} lesssim 10^9 M_odot$; they are essentially indistinguishable from the FR~Is belonging to the FRI{sl{CAT}}. The HEG FR~IIs are associated with optically bluer and mid-IR redder hosts than the LEG FR~IIs and to galaxies and black holes that are smaller, on average, by a factor $sim$2. FR~IIs have a factor $sim$ 3 higher average radio luminosity than FR~Is. Nonetheless, most ($sim 90$ %) of the selected FR~IIs have a radio power that is lower, by as much as a factor of $sim$100, than the transition value between FR~Is and FR~IIs found in the 3C sample. The correspondence between the morphological classification of FR~I and FR~II and the separation in radio power disappears when including sources selected at low radio flux thresholds, which is in line with previous results. In conclusion, a radio source produced by a low power jet can be edge brightened or edge darkened, and the outcome is not related to differences in the optical properties of the host galaxy.
183 - P. M. Ogle 2006
We present a Spitzer mid-infrared survey of 42 Fanaroff-Riley class II radio galaxies and quasars from the 3CRR catalog at redshift z<1. All of the quasars and 45+/-12% of the narrow-line radio galaxies have a mid-IR luminosity of nuLnu(15 micron) > 8E43 erg/s, indicating strong thermal emission from hot dust in the active galactic nucleus. Our results demonstrate the power of Spitzer to unveil dust-obscured quasars. The ratio of mid-IR luminous narrow-line radio galaxies to quasars indicates a mean dust covering fraction of 0.56+/-0.15, assuming relatively isotropic emission. We analyze Spitzer spectra of the 14 mid-IR luminous narrow-line radio galaxies thought to host hidden quasar nuclei. Dust temperatures of 210-660 K are estimated from single-temperature blackbody fits to the low and high-frequency ends of the mid-IR bump. Most of the mid-IR luminous radio galaxies have a 9.7 micron silicate absorption trough with optical depth <0.2, attributed to dust in a molecular torus. Forbidden emission lines from high-ionization oxygen, neon, and sulfur indicate a source of far-UV photons in the hidden nucleus. However, we find that the other 55+/-13% of narrow-line FR II radio galaxies are weak at 15 micron, contrary to single-population unification schemes. Most of these galaxies are also weak at 30 micron. Mid-IR weak radio galaxies may constitute a separate population of nonthermal, jet-dominated sources with low accretion power
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا