ترغب بنشر مسار تعليمي؟ اضغط هنا

Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface

86   0   0.0 ( 0 )
 نشر من قبل Alper Kiraz
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report laser emission from single, stationary, Rhodamine B-doped glycerol/water microdroplets located on a superhydrophobic surface. In the experiments, a pulsed, frequency-doubled Nd:YAG laser operating at 532 nm was used as the excitation source. The microdroplets ranged in diameter from a few to 20 um. Lasing was achieved in the red-shifted portion of the dye emission spectrum with threshold fluences as low as 750 J/cm2. Photobleaching was observed when the microdroplets were pumped above threshold. In certain cases, multimode lasing was also observed and attributed to the simultaneous lasing of two modes belonging to different sets of whispering gallery modes.



قيم البحث

اقرأ أيضاً

88 - A. Kiraz , A. Kurt , 2007
A self-control mechanism that stabilizes the size of Rhodamine B-doped water microdroplets standing on a superhydrophobic surface is demonstrated. The mechanism relies on the interplay between the condensation rate that was kept constant and evaporat ion rate induced by laser excitation which critically depends on the size of the microdroplets. The radii of individual water microdroplets (>5 um) stayed within a few nanometers during long time periods (up to 455 seconds). By blocking the laser excitation for 500 msec, the stable volume of individual microdroplets was shown to change stepwise.
202 - Luana Persano 2020
Lasers based on biological materials are attracting an increasing interest in view of their use in integrated and transient photonics. DNA as optical biopolymer in combination with highly-emissive dyes has been reported to have excellent potential in this respect, however achieving miniaturized lasing systems based on solid-state DNA shaped in different geometries to confine and enhance emission is still a challenge, and physico-chemical mechanisms originating fluorescence enhancement are not fully understood. Herein, a class of wavelength-tunable lasers based on DNA nanofibers is demonstrated, for which optical properties are highly controlled through the system morphology. A synergistic effect is highlighted at the basis of lasing action. Through a quantum chemical investigation, we show that the interaction of DNA with the encapsulated dye leads to hindered twisting and suppressed channels for the non-radiative decay. This is combined with effective waveguiding, optical gain, and tailored mode confinement to promote morphologically-controlled lasing in DNA-based nanofibers. The results establish design rules for the development of bright and tunable nanolasers and optical networks based on DNA nanostructures.
Hybrid pumping appears as a promising compromise in order to reach the much coveted goal of an electrically pumped organic laser. In such configuration the organic material is optically pumped by an electrically pumped inorganic device on chip. This engineering solution requires therefore an optimization of the organic gain medium under optical pumping. Here, we report a detailed study of the gain features of dye-doped polymer thin films. In particular we introduce the gain efficiency $K$, in order to facilitate comparison between different materials and experimental conditions. The gain efficiency was measured with various setups (pump-probe amplification, variable stripe length method, laser thresholds) in order to study several factors which modify the actual gain of a layer, namely the confinement factor, the pump polarization, the molecular anisotropy, and the re-absorption. For instance, for a 600 nm thick 5 wt% DCM doped PMMA layer, the different experimental approaches give a consistent value $Ksimeq$ 80 cm.MW$^{-1}$. On the contrary, the usual model predicting the gain from the characteristics of the material leads to an overestimation by two orders of magnitude, which raises a serious problem in the design of actual devices. In this context, we demonstrate the feasibility to infer the gain efficiency from the laser threshold of well-calibrated devices. Besides, temporal measurements at the picosecond scale were carried out to support the analysis.
Self-cleaning surfaces often make use of superhydrophobic coatings that repel water. Here, we report a hydrophobic Si nanospring surface, that effectively suppresses wetting by repelling water droplets. We investigated the dynamic response of Si nano spring arrays fabricated by glancing angle deposition. The vertical standing nanospring arrays were approximately 250 nm tall and 60 nm apart, which allowed the droplets to rebound within a few milliseconds after contact. Amazingly, the morphology of the nanostructures influences the impact dynamics. The rebound time and coefficient of restitution were also found to be higher for Si nanosprings than vertical SI columns. It has been proposed that the restoring force of the Si nanosprings may be responsible for the water droplet rebound and can be explained by considering the droplet/nanospring surface as a coupled spring system. These nanospring surfaces may find applications in self-cleaning windows, liquid-repellent exteriors, glass panels of solar cells, and antifouling agents for roof tiling.
Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments present ed within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا