ﻻ يوجد ملخص باللغة العربية
Holzer and Holzer (Discrete Applied Mathematics 144(3):345--358, 2004) proved that the Tantrix(TM) rotation puzzle problem is NP-complete. They also showed that for infinite rotation puzzles, this problem becomes undecidable. We study the counting version and the unique version of this problem. We prove that the satisfiability problem parsimoniously reduces to the Tantrix(TM) rotation puzzle problem. In particular, this reduction preserves the uniqueness of the solution, which implies that the unique Tantrix(TM) rotation puzzle problem is as hard as the unique satisfiability problem, and so is DP-complete under polynomial-time randomized reductions, where DP is the second level of the boolean hierarchy over NP.
Holzer and Holzer (Discrete Applied Mathematics 144(3):345--358, 2004) proved that the Tantrix(TM) rotation puzzle problem with four colors is NP-complete, and they showed that the infinite variant of this problem is undecidable. In this paper, we st
Transient chaos is an ubiquitous phenomenon characterizing the dynamics of phase space trajectories evolving towards a steady state attractor in physical systems as diverse as fluids, chemical reactions and condensed matter systems. Here we show that
For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. For this implicitly define
It has been known for almost three decades that many $mathrm{NP}$-hard optimization problems can be solved in polynomial time when restricted to structures of constant treewidth. In this work we provide the first extension of such results to the quan
The paper explores the correspondence between balanced incomplete block designs (BIBD) and certain linear CNF formulas by identifying the points of a block design with the clauses of the Boolean formula and blocks with Boolean variables. Parallel cla