ترغب بنشر مسار تعليمي؟ اضغط هنا

The centrality dependence of elliptic flow, the hydrodynamic limit, and the viscosity of hot QCD

79   0   0.0 ( 0 )
 نشر من قبل Jean-Yves Ollitrault
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the centrality and system-size dependence of elliptic flow measured at RHIC are fully described by a simple model based on eccentricity scaling and incomplete thermalization. We argue that the elliptic flow is at least 25% below the (ideal) ``hydrodynamic limit, even for the most central Au-Au collisions. This lack of perfect equilibration allows for estimates of the effective parton cross section in the Quark-Gluon Plasma and of its viscosity to entropy density ratio. We also show how the initial conditions affect the transport coefficients and thermodynamic quantities extracted from the data, in particular the viscosity and the speed of sound.



قيم البحث

اقرأ أيضاً

We present predictions for the centrality dependence of elliptic flow at mid-rapidity in Pb-Pb collisions at the LHC.
256 - B. Alver , et al 2006
This paper presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.
This work reports on investigations of the effects on the evolution of viscous hydrodynamics and on the flow coefficients of thermal dileptons, originating from a temperature-dependent specific shear viscosity $eta/s (T)$ at temperatures beyond 180 M eV formed at the Relativistic Heavy-Ion Collider (RHIC). We show that the elliptic flow of thermal dileptons can resolve the magnitude of $eta/s$ at the high temperatures, where partonic degrees of freedom become relevant, whereas discriminating between different specific functional forms will likely not be possible at RHIC using this observable.
We investigate the influence of a temperature-dependent shear viscosity over entropy density ratio eta/s on the transverse momentum spectra and elliptic flow of hadrons in ultrarelativistic heavy-ion collisions. We find that the elliptic flow in sqrt (s_NN) = 200 GeV Au+Au collisions at RHIC is dominated by the viscosity in the hadronic phase and in the phase transition region, but largely insensitive to the viscosity of the quark-gluon plasma (QGP). At the highest LHC energy, the elliptic flow becomes sensitive to the QGP viscosity and insensitive to the hadronic viscosity.
A new framework for evaluating hydrodynamic models of relativistic heavy ion collisions has been developed. This framework, a Comprehesive Heavy Ion Model Evaluation and Reporting Algorithm (CHIMERA) has been implemented by augmenting UVH 2+1D viscou s hydrodynamic model with eccentricity fluctuations, pre-equilibrium flow, and the Ultra-relativistic Quantum Molecular Dynamic (UrQMD) hadronic cascade. A range of initial temperatures and shear viscosity to entropy ratios were evaluated for four initial profiles, $N_{part}$ and $N_{coll}$ scaling with and without pre-equilibrium flow. The model results were compared to pion spectra, elliptic flow, and femtoscopic radii from 200 GeV Au+Au collisions for the 0--20% centrality range.Two sets of initial density profiles, $N_{part}$ scaling with pre-equilibrium flow and $N_{coll}$ scaling without were shown to provide a consistent description of all three measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا