ﻻ يوجد ملخص باللغة العربية
About a dozen field RR Lyrae stars have been observed with the 24-inch Heyde-Zeiss telescope of the Konkoly Observatory at Svabhegy, Budapest, since its refurbishment in 2003. Most of the observing time is allocated for the investigation of the Blazhko modulation, a phenomenon that still does not have a satisfactory explanation. The obtained multicolour CCD observations are unique in extent. The accuracy of the measurements makes it possible to detect low amplitude modulation of the light curve as well. The discovery of Blazhko stars with low modulation amplitudes warns that the incidence rate of the Blazhko modulation is, in fact, much larger than it was previously expected. This makes the efforts exploring the cause of the modulation even more important. A summary of our measurements and results achieved during the last 3 years is presented.
This paper summarizes the main results of our recent study of the non-Blazhko RR Lyrae stars observed with the Kepler space telescope. These stars offer the opportunity for studying the stability of the pulsations of RR Lyrae stars and for providing
Nineteen of the ~40 RR Lyr stars in the Kepler field have been identified as candidate non-Blazhko (or unmodulated) stars. In this paper we present the results of Fourier decomposition of the time-series photometry of these stars acquired during the
The Blazhko effect is the conspicuous amplitude and phase modulation of the pulsation of RR Lyrae stars that was discovered in the early 20th century. The field of study of this mysterious modulation has recently been invigorated thanks to the space
The results presented are a continuation of observing campaigns conducted by a small group of amateur astronomers interested in the Blazhko effect of RR Lyrae stars. The goal of these observations is to confirm the RR Lyrae Blazhko effect and to dete
We present the analysis of the Blazhko effect - quasi-periodic modulation of pulsation amplitude and/or phase - in the Galactic bulge first overtone RR Lyrae stars (RRc). We used the data gathered during the fourth phase of the Optical Gravitational