The density of trap states in the bandgap of semiconducting organic single crystals has been measured quantitatively and with high energy resolution by means of the experimental method of temperature-dependent space-charge-limited-current spectroscopy (TD-SCLC). This spectroscopy has been applied to study bulk rubrene single crystals, which are shown by this technique to be of high chemical and structural quality. A density of deep trap states as low as ~ 10^{15} cm^{-3} is measured in the purest crystals, and the exponentially varying shallow trap density near the band edge could be identified (1 decade in the density of states per ~25 meV). Furthermore, we have induced and spectroscopically identified an oxygen related sharp hole bulk trap state at 0.27 eV above the valence band.