ﻻ يوجد ملخص باللغة العربية
Extensions of statistical mechanics are routinely being used to infer free energies from the work performed over single-molecule nonequilibrium trajectories. A key element of this approach is the ubiquitous expression dW/dt=partial H(x,t)/ partial t which connects the microscopic work W performed by a time-dependent force on the coordinate x with the corresponding Hamiltonian H(x,t) at time t. Here we show that this connection, as pivotal as it is, cannot be used to estimate free energy changes. We discuss the implications of this result for single-molecule experiments and atomistic molecular simulations and point out possible avenues to overcome these limitations.
The Jarzynski equality and the fluctuation theorem relate equilibrium free energy differences to non-equilibrium measurements of the work. These relations extend to single-molecule experiments that have probed the finite-time thermodynamics of protei
A compressed knotted ring polymer in a confining cavity is modelled by a knotted lattice polygon confined in a cube in ${mathbb Z}^3$. The GAS algorithm [17] is used to sample lattice polygons of fixed knot type in a confining cube and to estimate th
We experimentally realize protocols that allow to extract work beyond the free energy difference from a single electron transistor at the single thermodynamic trajectory level. With two carefully designed out-of-equilibrium driving cycles featuring k
We introduce a novel and powerful method for exploring the properties of the multidimensional free energy surfaces of complex many-body systems by means of a coarse-grained non-Markovian dynamics in the space defined by a few collective coordinates.A
We introduce and implement a Monte Carlo scheme to study the equilibrium statistics of polymers in the globular phase. It is based on a model of interacting elastic lattice polymers and allows a sufficiently good sampling of long and compact configur