ﻻ يوجد ملخص باللغة العربية
The electromagnetic polarizabilities of the nucleon are shown to be essentially composed of the nonresonant $alpha_p(E_{0+})=+3.2$, $alpha_n(E_{0+})=+4.1$,the $t$-channel $alpha^t_{p,n}=-beta^t_{p,n}=+7.6$ and the resonant $beta_{p,n}(P_{33}(1232))=+8.3$ contributions (in units of $10^{-4}$fm$^3$. The remaining deviations from the experimental data $Deltaalpha_p=1.2pm 0.6$, $Deltabeta_p=1.2mp 0.6$, Deltaalpha_n=0.8pm 1.7$ and $Deltabeta_n=2.0mp 1.8$ are contributed by a larger number of resonant and nonresonant processes with cancellations between the contributions. This result confirms that dominant contributions to the electric and magnetic polarizabilities may be represented in terms of two-photon couplings to the $sigma$-meson having the predicted mass $m_sigma=666$ MeV and two-photon width $Gamma_{gammagamma}=2.6$ keV.
The low-energy amplitude of Compton scattering on the bound state of two charged particles of arbitrary masses, charges and spins is calculated. A case in which the bound state exists due to electromagnetic interaction (QED) is considered. The term,
A group theoretical derivation of a relation between the N --> Delta charge quadrupole transition and neutron charge form factors is presented.
Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtaine
The energies of the excited states of the Nucleon, $Delta$ and $Omega$ are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, correspond
We review recent developments in the theoretical investigation of the nucleon polarizabilities. We first report on the static polarizabilities as measured in real Compton scattering, comparing and interpreting the results from various theoretical app