ترغب بنشر مسار تعليمي؟ اضغط هنا

Circular and non-circular nearly horizon-skimming orbits in Kerr spacetimes

151   0   0.0 ( 0 )
 نشر من قبل Enrico Barausse
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed a detailed analysis of orbital motion in the vicinity of a nearly extremal Kerr black hole. For very rapidly rotating black holes (spin a=J/M>0.9524M) we have found a class of very strong field eccentric orbits whose angular momentum L_z increases with the orbits inclination with respect to the equatorial plane, while keeping latus rectum and eccentricity fixed. This behavior is in contrast with Newtonian intuition, and is in fact opposite to the normal behavior of black hole orbits. Such behavior was noted previously for circular orbits; since it only applies to orbits very close to the black hole, they were named nearly horizon-skimming orbits. Our analysis generalizes this result, mapping out the full generic (inclined and eccentric) family of nearly horizon-skimming orbits. The earlier work on circular orbits reported that, under gravitational radiation emission, nearly horizon-skimming orbits tend to evolve to smaller orbit inclination, toward prograde equatorial configuration. Normal orbits, by contrast, always demonstrate slowly growing orbit inclination (orbits evolve toward the retrograde equatorial configuration). Using up-to-date Teukolsky-fluxes, we have concluded that the earlier result was incorrect: all circular orbits, including nearly horizon-skimming ones, exhibit growing orbit inclination. Using kludge fluxes based on a Post-Newtonian expansion corrected with fits to circular and to equatorial Teukolsky-fluxes, we argue that the inclination grows also for eccentric nearly horizon-skimming orbits. We also find that the inclination change is, in any case, very small. As such, we conclude that these orbits are not likely to have a clear and peculiar imprint on the gravitational waveforms expected to be measured by the space-based detector LISA.



قيم البحث

اقرأ أيضاً

We consider the motion of massive and massless particles in a five-dimensional spacetime with a compactified extra-dimensional space where a black hole is localized, i.e., a caged black hole spacetime. We show the existence of circular orbits and rev eal their sequences and stability. In the asymptotic region, stable circular orbits always exist, which implies that four-dimensional gravity is more dominant because of the small extra-dimensional space. In the vicinity of a black hole, they do not exist because the effect of compactification is no longer effective. We also clarify the dependence of the sequences of circular orbits on the size of the extra-dimensional space by determining the appearance of the innermost stable circular orbit and the last circular orbit (i.e., the unstable photon circular orbit).
We study linear nonradial perturbations and stability of a marginal stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a test particle in stationary axisymmetric spacetimes which possess a reflection symmetry with resp ect to the equatorial plane. The proposed approach is applied to Kerr solution and Majumdar-Papapetrou solution to Einstein equation. Finally, we reexamine MSCOs for a modified metric of a rapidly spinning black hole that has been recently proposed by Johannsen and Psaltis [PRD, 83, 124015 (2011)]. We show that, for the Johannsen and Psaltiss model, circular orbits that are stable against radial perturbations for some parameter region become unstable against vertical perturbations. This suggests that the last circular orbit for this model may be larger than the ISCO.
The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and suf ficient condition on the metric function for the existence of timelike COs in SSS spacetimes. After analyzing the asymptotic behavior of the metric, we then show that asymptotic flat SSS spacetime that corresponds to a negative Newtonian potential at large $r$ will always allow the existence of CO. The stability of the CO in a general SSS spacetime is then studied using the Lyapunov exponent method. Two sufficient conditions on the (in)stability of the COs are obtained. For null geodesics, a sufficient condition on the metric function for the (in)stability of null CO is also obtained. We then illustrate one powerful application of these results by showing that an SU(2) Yang-Mills-Einstein SSS spacetime whose metric function is not known, will allow the existence of timelike COs. We also used our results to assert the existence and (in)stabilities of a number of known SSS metrics.
195 - Niels Warburton 2014
Accurately modeling astrophysical extreme-mass-ratio-insprials requires calculating the gravitational self-force for orbits in Kerr spacetime. The necessary calculation techniques are typically very complex and, consequently, toy scalar-field models are often developed in order to establish a particular calculational approach. To that end, I present a calculation of the scalar-field self-force for a particle moving on a (fixed) inclined circular geodesic of a background Kerr black hole. I make the calculation in the frequency-domain and demonstrate how to apply the mode-sum regularization procedure to all four components of the self-force. I present results for a number of strong-field orbits which can be used as benchmarks for emerging self-force calculation techniques in Kerr spacetime.
This article explores the characteristics of ergoregion, horizons and circular geodesics around a Kerr-Newman-Kasuya black hole. We investigate the effect of spin and dyonic charge parameters on ergoregion, event horizon and static limit surface of t he said black hole. We observed that both electric, as well as magnetic charge parameters, results in decreasing the radii of event horizon and static limit, whereas increasing the area of ergoregion. The obtained results are compared with that acquired from Kerr and Schwarzschild black holes. Moreover, we figured out the photons orbit of circular null geodesics and studied the angular velocity of a particle within ergoregion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا