ﻻ يوجد ملخص باللغة العربية
We report on the layer-by-layer growth of single-crystal Al2O3 thin-films on Nb (110). Single-crystal Nb films are first prepared on A-plane sapphire, followed by the evaporation of Al in an O2 background. The first stages of Al2O3 growth are layer-by-layer with hexagonal symmetry. Electron and x-ray diffraction measurements indicate the Al2O3 initially grows clamped to the Nb lattice with a tensile strain near 10%. This strain relaxes with further deposition, and beyond about 5 nm we observe the onset of island growth. Despite the asymmetric misfit between the Al2O3 film and the Nb under-layer, the observed strain is surprisingly isotropic.
YBa$_2$Cu$_3$O$_{7-delta}$ is a good candidate to systematically study high-temperature superconductivity by nanoengineering using advanced epitaxy. An essential prerequisite for these studies are coherently strained YBa$_2$Cu$_3$O$_{7-delta}$ thin f
The latest discovery of possible high temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate, together with the observation of its unique electronic structure and nodeless superconducting gap, has generated much atten
Understanding new superconductors requires high-quality epitaxial thin films to explore intrinsic electromagnetic properties, control grain boundaries and strain effects, and evaluate device applications. So far superconducting properties of ferropni
Graphene is a 2D material that displays excellent electronic transport properties with prospective applications in many fields. Inducing and controlling magnetism in the graphene layer, for instance by proximity of magnetic materials, may enable its
We have succeeded in growing epitaxial and highly stoichiometric films of EuO on yttria-stabilized cubic zirconia (YSZ) (001). The use of the Eu-distillation process during the molecular beam epitaxy assisted growth enables the consistent achievement