ترغب بنشر مسار تعليمي؟ اضغط هنا

Langmuir blodgett assembly of densely aligned single walled carbon nanotubes from bulk materials

243   0   0.0 ( 0 )
 نشر من قبل Xiaolin Li
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single walled carbon nanotubes exhibit advanced electrical and surface properties useful for high performance nanoelectronics. Important to future manufacturing of nanotube circuits is large scale assembly of SWNTs into aligned forms. Despite progress in assembly and oriented synthesis, pristine SWNTs in aligned and close-packed form remain elusive and needed for high current, speed and density devices through collective operations of parallel SWNTs. Here, we develop a Langmuir Blodgett method achieving monolayers of aligned SWNTs with dense packing, central to which is a non covalent polymer functionalization by PmPV imparting high solubility and stability of SWNTs in an organic solvent DCE. Pressure cycling or annealing during LB film compression reduces hysteresis and facilitates high degree alignment and packing of SWNTs characterized by microscopy and polarized Raman spectroscopy. The monolayer SWNTs are readily patterned for device integration by microfabrication, enabling the highest currents 3mA through the narrowest regions packed with aligned SWNTs thus far.



قيم البحث

اقرأ أيضاً

Single-walled carbon nanotubes are promising nanoelectronic materials but face long-standing challenges including production of pure semiconducting SWNTs and integration into ordered structures. Here, highly pure semiconducting single-walled carbon n anotubes are separated from bulk materials and self-assembled into densely aligned rafts driven by depletion attraction forces. Microscopy and spectroscopy revealed a high degree of alignment and a high packing density of ~100 tubes/micron within SWNT rafts. Field-effect transistors made from aligned SWNT rafts afforded short channel (~150 nm long) devices comprised of tens of purely semiconducting SWNTs derived from chemical separation within a < 1 micron channel width, achieving unprecedented high on-currents (up to ~120 microamperes per device) with high on/off ratios. The average on-current was ~ 3-4 microamperes per tube. The results demonstrated densely aligned high quality semiconducting SWNTs for integration into high performance nanoelectronics.
Although a considerable number of solvent based methodologies have been developed for exfoliating black phosphorus, so far there are no reports on controlled organization of these exfoliated nanosheets on substrates. Here, for the first time to the b est of our knowledge, a mixture of N-Methyl-2-pyrrolidone (NMP) and deoxygenated water is employed as a subphase in Langmuir Blodgett (LB) trough for assembling the nanosheets followed by their deposition on substrates and studied its field effect transistor (FET) characteristics. Electron microscopy reveals the presence of densely aligned, crystalline, ultra-thin sheets of pristine phosphorene having lateral dimensions larger than hundred of microns. Furthermore, these assembled nanosheets retain their electronic properties and show a high current modulation of 10^4 at room temperature in FET devices. The proposed technique provides semiconducting phosphorene thin films that are amenable for large area applications.
We have calculated the binding energy of various nucleobases (guanine (G), adenine (A), thymine (T) and cytosine (C)) with (5,5) single-walled carbon nanotubes (SWNTs) using ab-initio Hartre-Fock method (HF) together with force field calculations. Th e gas phase binding energies follow the sequence G $>$ A $>$ T $>$ C. We show that main contribution to binding energy comes from van-der Wall (vdW) interaction between nanotube and nucleobases. We compare these results with the interaction of nucleobases with graphene. We show that the binding energy of bases with SWNTs is much lower than the graphene but the sequence remains same. When we include the effect of solvation energy (Poisson-Boltzman (PB) solver at HF level), the binding energy follow the sequence G $>$ T $>$ A $>$ C $>$, which explains the experimentcite{zheng} that oligonucleotides made of thymine bases are more effective in dispersing the SWNT in aqueous solution as compared to poly (A) and poly (C). We also demonstrate experimentally that there is differential binding affinity of nucleobases with the single-walled carbon nanotubes (SWNTs) by directly measuring the binding strength using isothermal titration (micro) calorimetry. The binding sequence of the nucleobases varies as thymine (T) $>$ adenine (A) $>$ cytosine (C), in agreement with our calculation.
Diffusion Monte Carlo calculations on the adsorption of $^4$He in open-ended single walled (10,10) nanotubes are presented. We have found a first order phase transition separating a low density liquid phase in which all $^4$He atoms are adsorbed clos e to the tube wall and a high density arrangement characterized by two helium concentric layers. The energy correction due to the presence of neighboring tubes in a bundle has also been calculated, finding it negligible in the density range considered.
Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically-resolved electron energy-loss spectroscopy to detect individual nitrogen dop ants in single-walled carbon nanotubes and compared with first principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighbouring local lattice distortion such as Stone-Thrower-Wales defects. The stability under the electron beam of these nanotubes has been studied in two extreme cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا