استخدام التنقيب في المعطيات القابلة للقياس في التنبؤ بتأخر الرّحلات الجوّية


الملخص بالعربية

تتكرر تأخيرات الرحلات الجوية في جميع أنحاء العالم (حوالي 20٪ من رحلات الطيران تصل متأخرة أكثر من 15 دقيقة) وتقدر كلفتها السنوية بعشرات المليارات من الدولارات. يجعل هذا السيناريو التنبؤ بتأخيرات الرحلة قضية أساسية لشركات الطيران والمسافرين. الهدف الرئيسي من هذا العمل هو تطبيق تنبؤ بتأخير وصول رحلة مجدولة تبعاً للظروف الجوية. يأخذ تأخير الوصول المتوقع في الاعتبار كلاً من معلومات الرحلة (المطار الأصلي ، مطار الوجهة ، وقت المغادرة ووقت الوصول) وأحوال الطقس في المطار الأصلي والمطار المقصود وفقًا لجدول الرحلة. تم تحليل الرحلات الجوية ومجموعات المعطيات الخاصة بالملاحظات الجوية باستخدام الخوارزميات المتوازية المطبقة في برنامج MapReduce المنفّذ على منصّة سحابية. تظهر النتائج دقة عالية في التنبؤ بالتأخيرات مع عتبة معينة. على سبيل المثال ، مع عتبة تأخير مدتها 15 دقيقة ، نحقق دقة تبلغ 74.2 ٪ و 71.8 ٪ من التذكر recall على الرحلات المتأخرة ، بينما مع عتبة 60 دقيقة ، كانت الدقة 85.8 ٪ ، وتذكّر التأخر هو 86.9 ٪. علاوة على ذلك ، توضح النتائج التجريبية قابلية التوسّع للمتنبئ التي يمكن تحقيقها أثناء أداء مهام إعداد المعطيات والتنقيب بها كتطبيقات MapReduce على السحابة.

المراجع المستخدمة

https://www.researchgate.net/publication/292539590_Using_Scalable_Data_Mining_for_Predicting_Flight_Delays

تحميل البحث