يتناول البحث نمذجة شبكة عصبونية صنعية متعددة الطبقات ذات تغذية أمامية مدربة باستخدام خوارزمية الانحدار التدريجي للخطأ ذات معامل الزخم و معدل التعلم المتغير، و ذلك لتقدير خرج الشبكة العصبونية الموافق لنسبة التشغيل الأمثل لمبدل رافع الجهد المستمر اعتماداً على استخدام قياسات تغيرات كل من درجة حرارة الخلية الشمسية و شدة الإشعاع الشمسي، لتتبع نقطة الاستطاعة العظمى MPP لنظم الطاقة الشمسية الكهروضوئية. بالتالي يعتبر المتحكم DMPPT-ANN (Developed MPPT-ANN) المقترح في البحث، مستقل في عمله عن استخدام القياسات الكهربائية لخرج نظام PV لتحديد نسبة التشغيل، و دون الحاجة لاستخدام متحكم تناسبي-تكاملي PI) (Proportional Integral للتحكم في دورة عمل مبدل الجهد، و هذا من شأنه تحسين الأداء الديناميكي للمتحكم المقترح بتحديد نسبة التشغيل بدقة و سرعة فائقة. في هذا السياق، يناقش البحث الاختيار الأمثل لهيكلية الشبكة المقترحة من حيث تحديد العدد الأمثل للطبقات الخفية و العدد الأمثل للعصبونات الموجودة فيها، بتقييم قيم متوسط مربع الخطأ و معامل الارتباط الناتجة بعد كل عملية تدريب للشبكة العصبونية. بعد ذلك يعتمد نموذج الشبكة النهائي الذي يمتلك الهيكلية الأمثل، ليشكل المتحكم المتقرح في البحث DMPPT-ANN لتتبع نقطة MPP لنظام.PV أظهرت نتائج المحاكاة المنجزة في بيئة Matlab/Simulink، الأداء الأفضل للمتحكم DMPPT-ANN المقترح المرتكز على نموذج الشبكة العصبونية MLFFNN، و ذلك بدقة تقدير نسبة التشغيل و بتحسين سرعة استجابة نظام PV في الوصول لنقطة MPP، بالإضافة إلى التخلص بشكل نهائي من التذبذبات الناتجة في الحالة المستقرة في منحني استجابة استطاعة خرج نظام PV مقارنة مع استخدام عدد من المتحكمات المرجعية المستخدمة: متحكم تتبع متقدم MPPT-ANN-PI مرتكز على شبكة عصبونية ANN لتقدير توتر نقطة MPP مع متحكم PI تقليدي، متحكم عائم MPPT-FLC ومتحكم تتبع تقليدي MPPT-INC يستخدم تقنية زيادة الناقلية INC