تعتبر الأمطار من الظواهر غير الخطية المعقدة، و التي تتطلب النمذجة الرياضية غير الخطية لغرض التنبؤ بها. هذه الدراسة تقارن أداء التنبؤ بالأمطار ليوم مقدماً، حيث وضعت اثنين من نماذج الشبكات العصبونية (ذات التغذية الأمامية) للتنبؤ بأمطار يومية متتالية لثلاثة أشهر (كانون الأول، كانون الثاني، شباط) و هذه النماذج هي: نموذج الشبكات العصبية الاصطناعية التقليدية (ANN) و نموذج عصبوني مع تقنية التحويل المويجي وفق (wavelet- neural) طريقتين مختلفتين لبناء النماذج و باستخدام نوعين من المويجات من عائلة دوبغنز (db2, db5) و من أجل المقارنة بين أداء النماذج في قدرتها على التنبؤ بالأمطار على المدى القصير (ليوم و يومين و ثلاثة أيام مقدماً) للأشهر الأخيرة من فترة الدراسة، فقد استخدمت بعض المعايير الإحصائية، التي اشتملت على جذر متوسط مربعات الأخطاء (RMSE) و معامل الارتباط (R).