نمذجة علاقة الهطل_الجريان باستخدام نظام هجين من الشبكات العصبية الصنعية و الخوارزمية الجينية


الملخص بالعربية

تستخدم الشبكة العصبية الصنعية طريقة تعلم استقرائي، و تتطلب بشكل عام أمثِلة لبيانات التدريب، بينما تستخدم الخوارزمية الجينية تعلم اقتطاعي، و تتطلب تابع هدف. لقد تمّ تنظيم التعاون بين هاتين التقانتين في دراستنا هذه بغرض تعزيز أداء كل تقانة من خلال بناء نظام هجين منهما، عن طريق كتابة برمجيّة عامّة باستخدام برنامج MATLAB بغرض الاختيار الفعّال لمتحولات الدخل لعمليات التنبؤ، و أمثلة أوزان شبكة البيانات قيد الدراسة، و من ثمّ تطبيق هذه البرنامج على بيانات يوميّة، تمّ جمعها من حوض نهر الكبير الجنوبي هي (الهطول، التبخر، الحرارة، الرطوبة النسبية و الجريان النهري بتأخر زمني مقداره يوم واحد) بغرض التنبؤ بالجريان النهري.

المراجع المستخدمة

AWAD, A. ؛POSER, I. 2007-Calibrating Conceptual Rainfall- Runoff Models Using a Real Genetic Algorithm Combined with a Local Search Method, Vol. 1, 174-181
Mutlu, E; Chaubey, I; Hexmoor, H; Bajwa, S. 2008- Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed, Published online in Wiley InterScience, 1-10
ASADI, S.؛ SHAHRABI, J.؛ ABBASZADEH, P. ؛TABANMEHR, S. 2013- A new hybrid artificial neural networks for rainfall_runoff process modeling, Neurocomputing an international journal, Iran, 470_480

تحميل البحث