يهدف البحث إلى تطوير طريقة جديدة لاستخراج و تحديد خصائص و سمات الأورام السرطانية في صور المرنان المغناطيسي للثدي بالإعتماد خوارزميات العنقدة و معالجة الصور الرقمية ,تم في البداية الاعتماد على إحدى خوارزميات العنقدة فيتجزئة الصورة و تجميع عناصرها و فققيم السويات الرمادية و من ثم تم تطبيق العمليات المورفولوجية و ذلك للتخلص من الضجيج و حذف المعلومات غير المرغوبة و بالتالي استخراج المنطقة المشبوهة و أخيراً تم استخلاص بعض الواصفات الشكلية و التي يمكن ان تكون مفيدة في تشخيص المنطقة المشبوهة المستخرجة ,استخدمت قاعدة بيانات مكونة من 96 صورة من صور المرنان المغناطيسي للثدي و تم تطبيق الطريقة المقترحة عليها باستخدام برنامج الماتلاب حيث تم استخراج المناطق الورمية من هذه الصور و مقارنتها مع رأي الأطباء.
This research aims to developing new method for breast tumors extraction and
features detection in breast magnetic resonance images by depending on clusteringand
image processing algorithms. At the beginning, one of clustering algorithms was used for
image segmentation and grouping pixels by their gray scale values. Then morphological
operations were implemented in order to remove noise and undesired regions, after that
suspected areas were extracted. Finally some shape features for extracted area were
detected, this features could be very useful for tumors diagnosis. A database consisted of
96breast magnetic resonance images were used and proposed approach was appliedby
MATLAB program, and we obtainedbreast tumors extraction and its features and
compared them with the doctor's opinion .
المراجع المستخدمة
B.Senthilkumar,G.Umamaheswari,Combination of Novel Enhancement Technique and Fuzzy C Means Clustering Technique in Breast Cancer Detection. Biomed Res-India 2013 Volume 24 Issue 2,252-257
S.SAHEB BASHA, DR.K.SATYA PRASAD, Automatic detection of breast cancer mass in mammograms using morphological operators and fuzzy c –means clustering. Journal of Theoretical and Applied Information Technology. 2009,704-709
VALLIAPPAN Raman, PUTRA Sumari, MANDAVA Rajeswari, A Theoretical Methodology and Prototype Implementation for Detection Segmentation Classification of Digital Mammogram Tumor by Machine Learning. IJCSI International Journal of Computer Science Issues. Vol. 7, Issue 5, September 2010,38-44