يقدم هذا البحث منظومة للتعرف على مسميات المخططات الزمنية، حيث يتم استخلاص المسميات من المخططات، التي هي عبارة عن صورة باستخدام التقسيم المكاني من أجل اقتطاع صور المسميات فقط. تُوحد أحجام صور المسميات باستخدام خوارزمية المتوسط لسببين؛ الأول تشكيل قاعدة البيانات التدريبية للشبكات العصبونية المستخدمة، و ثانياً من أجل اجراء عملية التعرف. تم اعتماد الشبكات العصبونية للتعرف بآليتين مختلفتين: آلية التصنيف classification باستخدام شبكة Perceptron و آلية التمييز باستخدام شبكة الانتشار العكسي، حيث تم بناء شبكة Perceptron دخلها صورة المسمى فتُعطي في خرجها الدليل التصنيفي للمسمى، ليتم معرفته بالاعتماد على جدول مسميات مخزن مسبقاً، و شبكة انتشار عكسي دخلها صورة المسمى و خرجها الترميز الحاسوبي للمسمى، كما تم تصميم شبكة الانتشار العكسي بحيث يمكن لها التعرف على كافة صور مسميات أحرف الأبجدية الانكليزية المستخدمة في المخططات الزمنية، أظهرت نتائج البحث فعالية المنظومة المصممة للتعرف على مسميات المخططات الزمنية من صورها، و ذلك للآليتين التصنيفية و التمييزية، بعد تطبيق النظام على ثلاث مخططات زمنية.
This paper introduces a system to recognize labels of time plans, where labels are
extracted from time plan. This labels are images, so spatial segmentation is used to extract
images of labels only. Size of images of labels are made same using median's algorithm for
two purposes. The first one is to create database training for used neural networks. The
second is to recognizing's processing. Two methods of recognizing are dependent on using
neural networks technic: classification using perceptron network and recognizing using
back propagation network. Perceptron network is built to take image as input and to give
classification index as output for label. Then label is recognize dependent on stored table
of ASCII for label. Back propagation network is designed to recognize images for all
letters of English alphabet that are used in time plan. Results of research appear efficiency
of designed system to recognize labels of time plan from their images for both methods
after system had been applied on three time plans.
المراجع المستخدمة
HARALICK;ROBERT M.; and LINDA G. Shapiro, Computer and Robot Vision, Volume I, Addison-Wesley, 1992, 28-48
JAIME S. Cardoso;PEDROCarvalho;LUÍS F. Teixeira; Luís Corte-Real,Partitiondistance methods for assessing spatial segmentations of images and videos, Computer Vision and Image Understanding, Volume 113, Issue 7, July 2009
CHAOBO Min;JUNJU Zhang; Benkang Chang;BIN Sun; Yingjie Li,Spatio-temporal segmentation of moving objects using edge features in infrared videos; Optik - International Journal for Light and Electron Optics, Volume 125, Issue 7, April 2014
في السنوات الأخيرة نمت مشكلة تصنيف الكائنات في الصّور نتيجة لمتطلبات القطاع الصناعي.على الرّغم من تعدد التقنيات المستخدمة للمساعدة في عملية التصنيف SIFT Scale Invariant Feature Transforms، ORB Oriented Fast And Rotated Brief , SURF Speed Up Robust
قمنا من خلال هذا البحث بتصميم برنامج يهدف إلى تحديد النقاط الحرجة التي يمكن أن
تسبب إنهيار التوتر، و بناء شبكة عصبونية ضمن بيئة برمجيات ماتلاب مهمتها التنبؤ بقيمة
الاستطاعة العظمى التي يمكن نقلها على نظام القدرة الكهربائية في ظروف انهيار التوتر
دو
أتت فكرة المشروع من الأهمية المتزايدة للنظم المفتوحة المصدر في أيامنا هذه لاسيما الإمكانات الواسعة التي تتيحها هذه النظم في مجال إدارة الشبكات, حيث يهدف مشروعنا إلى إظهار مزايا نظام Ubuntu وذلك من خلال عرض وإعداد مجموعة من الخدمات التي يقدها في مجال
يقدم هذا البحث تقنية جديدة لتحسين عامل الاستطاعة بالاعتماد على الشبكات العصبونية الاصطناعية. حيث يتم التحكم بمحرك متواقت عن طريق متحكم عصبوني للتعامل مع مشكلة تعويض الاستطاعة الردية للنظام، و ذلك بهدف تحسين عامل الاستطاعة.
تم في هذا البحث نمذجة النظ
سنقدم في هذا البحث منهجية علمية للتنبؤ قصيرة جدا بالحمولات الكهربائية للمنظومة الكهربائية السورية أي التنبؤ بهذه الحمولات لعدة ساعات قادمة و قد أطلقنا على هذا النوع من التنبؤ التنبؤ العملياتي, تعتمد هذه المنهجية على استخدام الشبكات العصبية الصناعية.