تبني الشبكات التطبيقية متعددة البث شجرة تغطية بث مجموعاتي بين المضيفين النهائيين. على عكس البث المجموعاتي التقليدي حيث تكون عقد الشجرة الداخلية هي موجهات مكرسة، تكون ثابتة و لا تغادر شجرة البث المجموعاتي طوعاً، فإن العقد غير الطرفية في شجرة التغطية هي عبارة عن مضيفين أحرار يمكنهم الانضمام/ المغادرة متى أرادوا ذلك، أو حتى المغادرة دون إخبار أي عقدة بذلك. لذلك، يمكن للعقدة المغادرة فجأة دون إعطاء عقدها الأبناء أو العقدة المركزية الزمن الكافي لإعادة تشكيل شجرة التغطية، لذلك فهناك حاجة لتنفيذ عملية إعادة تشكيل الشجرة بحيث يجب على كل عقدة ابن إعادة الانضمام إلى شجرة التغطية. في هذه الحالة، ستنفصل هذه العقد عن شجرة التغطية و لا يمكنها الحصول على البيانات حتى تنضم من جديد. تسبب هذه الخصائص الديناميكية عدم استقرار شجرة التغطية، و التي يمكن أن تؤثر بشكل كبير على المستخدم.
أحد التحديات الرئيسية في بناء بروتوكول شبكة تطبيقية متعدد البث كفوء و فعال هو توفير آلية استعادة البيانات بسرعة عندما يسبب فشل عقد الشجرة تقسيم مسارات تسليم البيانات. سنقوم في هذا البحث بتحليل أداء الحلول المقترحة لإعادة تشكيل شجرة التغطية اعتماداً على عدة بارامترات.
Overlay multicast (Application-Level Multicast (ALM)) constructs a multicast delivery tree among end hosts. Unlike traditional IP multicast where the internal tree nodes are dedicated routers which are relatively stable and do not leave the multicast tree voluntarily, the non-leaf nodes in the overlay tree are free end hosts which can join/leave the overlay at will, or even crash without notification. So, the leaving node can leave suddenly and cannot give its descendants (and the Rendez-vous Point (RP)) the time to prepare the recovering (the reconnection) of the overlay tree, and so there is a need to trigger a rearrangement process in which each one of its descendants should rejoin the overlay tree. In this case, all of its downstream nodes are partitioned from the overlay tree and cannot get the multicast data any more. These dynamic characteristics cause the instability of the overlay tree, which can significantly impact the user.
A key challenge in constructing an efficient and resilient ALM protocol is to provide fast data recovery when overlay node failures partition the data delivery paths. In this paper, we analyze the performance of the ALM tree recovery solutions using different metrics.
المراجع المستخدمة
(R.Wittmann and M. Zitterbart. “Multicast Communication Protocols and Applications”. ISBN 1-55860-645-9. Morgan Kaufmann Publishers, (2001
(C. Diot, B.N. Levine, B. Lyles, H. Kassem, and D. Balensiefen. “Deployment issues for the IP multicast service and architecture”. IEEE Network, 14:78-88, February (2000
(Ayman El-Sayed. “Application-Level Multicast Transmission Techniques Over The Internet”. PhD thesis, INRIA Rhne Alpes, March (2004
تميّزت الشبكات التطبيقية متعددة البث بسهولة انتشارها، فهي لا تتطلب أي تغيير في طبقة الشبكة، حيث يتم إرسال البيانات في هذه الشبكة عبر شجرة التغطية المبنية باستخدام الاتصال أحادي البث بين العقد النهائية، و الذين هم مضيفون أحرار يمكنهم الانضمام و المغاد
تم اقتراح الشبكات التطبيقية متعددة البث كحل فعال لتجاوز مشكلة انتشار نموذج اتصال البث المجموعاتي. تبني هذه الشبكة شجرة تغطية مؤلفة من اتصالات نهاية إلى نهاية أحادية البث اعتماداً على تعاون أعضاء المجموعة مع بعضهم البعض. و تعتمد فعالية الشجرة المبنية
كرّست الأبحاث الحديثة جهودها للتغلب على مشكلات شبكات البث المجموعاتي و ذلك من خلال نقل الوظائف و المسؤوليات المتعلقة بالبث المجموعاتي من الموجهات (طبقة الشبكة) إلى العقد الطرفية صاحبة العلاقة الرئيسية (طبقة التطبيقات).
تعتمد معظم بروتوكولات الشبكات
نقدم في هذا البحث نموذج رياضي مستمر للحصول على الحل الأمثل للمشكلة الناتجة
عن إضافة آلية للتسامح مع الأعطال في بيئات التنفيذ التفرعية و الموزعة عالية الآداء
و هي مشكلة التسوية بين الكلفة المضافة من آلية التسامح مع الأعطال و تأثير الأعطال
على بيئة
نقدم في هذا البحث دراسة حول الكلفة الزمنية المضافة إلى بيئة الحوسبة الشبكية نتيجة
استخدام آلية تخزين / استرجاع متناسقة للتسامح مع الأعطال في هذه البيئة، لنصل من
خلال هذه الدراسة إلى نموذج رياضي يحدد لنا الوقت الأنسب لحفظ نقاط التخزين
للتطبيق بهدف