تدرس هذه المقالة منهجية جديدة لتحديد وجود العطل من عدمه، و تصنيف الاعطال في الوقت الحقيقي بالاعتماد على الشبكات العصبونية في خطوط نقل القدرة الكهربائية. تعتمد هذه الخوارزمية على استخدام إشارات الجهود، و التيارات بوصفها يمثل دخل للشبكات العصبونية بعد تقطيعها بتردد تقطيع 1 KHz، و بدون استخدام نافذة بيانات متحركة، حيث ان إشارات الدخل تعالج لحظياً على شكل سلسلة من البيانات المتلاحقة. يعتمد النموذج على ثلاث شبكات عصبونية يعالج كل منها بيانات طور من الأطوار بالإضافة الى شبكة عصبونية رابعة للجهد و التيار الصفريين. يتمكن هذا النظام من تحديد نوع العطل خلال زمن لا يتجاوز الـ 5 ميلي ثانية.
تتطلب أنظمة القدرة الحديثة تقنية دقيقة و سريعة للمعالجة في الوقت الحقيقي. تبين دراسات المحاكاة أن التقنية المقترحة قادرة على تمييز حالات العطل المختلفة بشكل دقيق جداً، و قد نجحت هذه التقنية في تحديد جميع أنواع الأعطال تحت شروط النظام المختلفة، بالتالي فإنها دقيقة بنسبة 100% و مناسبة للتطبيق في الزمن الحقيقي.
This paper shows a new approach to determine the presence of defects and to classify the defect type online based on Artificial Neural Networks (ANNs) in electrical power system transmission lines. This algorithm uses current and voltage signals sampled at 1
KHz as an input for the proposed ANNs without the involvement of a moving data window, so input data will be processed as a string of data. The model depends on three neural networks one for each phase and another fourth neural network for the involvement of the ground during the fault. Response time of the classifier is less than 5 ms. Moreover modern power system requires a fast, robust and accurate technique for online processing.
Simulation studies show that the proposed technique is able to distinguish the fault type very accurate. Also this technique succeeded in determining of all defect types under all system conditions, so it is 100 percent accurate, so it is suitable for online application.
المراجع المستخدمة
Ziegler G., “Numerical Distance Protection Principles and Applications”, Siemens, Third Edition, 400, 2008
R. N. Mahanty; P.B. Dutta Gupta, “A fuzzy logic based fault classification approach using current samples only”, Electric Power Systems Research 77, 2007, 501-507, Elsevier Ltd 2007 .Available at: www.sciencedirect.com
Kola VenkataramanaBabu; et al. ,“Recent techniques used in transmission line protection: a review”, International Journal of Engineering, Science and Technology, Vol. 3, No. 3, 2011, 1-8. Available at: www.ijest-ng.com
M. Sanaye-Pasand; H. Khorashadi-Zadeh, “ Transmission Line Fault Detection & Phase Selection using ANN ”, International Conference on Power Systems Transients – IPST, New Orleans, USA,1-2, 2003
V. S. Kale; et al. “Detection and Classification of Faults on Parallel Transmission Lines using Wavelet Transform and Neural”, International Journal of Electrical and Computer Engineering 3:16, 2008