ترغب بنشر مسار تعليمي؟ اضغط هنا

نمذجة الهطول المطري_الجريان النهري باستخدام الشبكة العصبونية الصنعية في حوض نهر الكبير الجنوبي

Rainfall-Runoff Modelling by Artificial Neural Network in Alkabeer Aljonobee Catchment

2230   0   68   0 ( 0 )
 تاريخ النشر 2014
والبحث باللغة العربية
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تُشكِّل العلاقة بين الهطول المطري_الجريان النهري Rainfall_Runoff (R_R إحدى المركبات الأساسية لدورة المياه في الطبيعة، كما أنها تُشكّل واحدة من أكثر الظواهر الهيدرولوجية تعقيداً و صعوبةً في الفهم؛ و ذلك بسبب كثرة عدد البارامترات المتضمَّنة في نمذجة العمليات الفيزيائية و بسبب اتساع فضائها البارامتري و التغير المؤقت في مواصفات الحوض، إضافةً إلى تعدد نماذج الهطولات المطرية. هذا و تعدُّ نمذجة العلاقة بين الهطول المطري _الجريان النهري مهمة جدّاً من أجل التصميم الهندسي و الإدارة المتكاملة للموارد المائية، إضافةً إلى التنبؤ بالفيضان و درء مخاطره. حيث يهدف هذا البحث إلى نمذجة العلاقة بين الهطول المطري_الجريان النهري في حوض نهر الكبير الجنوبي في سوريا، بالاعتماد على تقانة الشبكة العصبونية الصنعية (ANN) Artificial Neural Network، حيث بُني النموذج الرياضي باستخدام كلٍّ من nntool وntstool مكتبتين ملحقتين ببرنامج الماتلاب، و اعتمد النموذج على البيانات اليومية للهطول المطري، درجة حرارة الهواء، الرطوبة النسبية و التبخر في المحطات المناخية المنتشرة في الحوض، كما استُخدِمت بيانات الجريان النهري اليومية لغرض التحقق من صحة أداء الشبكة باستخدام تقانة Simulink المتاحة في حزمة برمجيات الماتلاب. أثبتت نتائج الدراسة أنَّ تقانة الشبكة العصبونية الصنعيَّة تعطي نتائج جيدة في نمذجة العلاقة بين الهطول المطري_الجريان النهري، اعتماداً على مجموعة البيانات المستخدَمة، و بالتالي يمكن اعتبارها بديلاً للطرائق التقليدية في نمذجة العلاقة R_R.



المراجع المستخدمة
Rientjes, T. H. M.؛ De Vos, N. J. Constraints of artificial neural networks for rainfallrunoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrology and Earth System Sciences Discussions Belgium, 2005, 365– 415
Abbott, M. B.؛ Bathurst, J. C.؛ Cunge, J. A.؛ O’Connell, P. E.؛ Rasmussen, J. An introduction to the european hydrological system – Syste`me Hydrologique Europe´en, “SHE”, 2: Structure of a physically-based, distributed modelling system. 1986, 61–77
Nash, J. E.؛ Sutcliffe, J. V. River flow forecasting through conceptual models. Journal of Hydrology1970, 282–290
Modarres, R. Multi-criteria validation of artificial neural network rainfall-runoff modeling. Hydrologu & Earth System Science Iran, 2009, 411-421
قيم البحث

اقرأ أيضاً

تشكل العلاقة بين الهطول المطري_الجريان السطحي إحدى المركبات الأساسية للدورة الهيدرولوجية للمياه في الطبيعة، كما أنها تشكل واحدة من أكثر الظواهر الهيدرولوجية تعقيداً و صعوبةً في الفهم؛ و ذلك بسبب كثرة عدد المتغيرات المتضمَّنة في نمذجة العمليات الفي زيائية و التغير المؤقت في مواصفات الحوض، إضافةً إلى تعدد نماذج الهطولات المطرية. و تعدُّ نمذجة العلاقة بين الهطول المطري و الجريان السطحي مهمة جدّاً من أجل التصميم الهندسي و الإدارة المتكاملة للموارد المائية، إضافةً إلى التنبؤ بالفيضان و درء مخاطره. من هنا تبرز أهمية نمذجة العلاقة بين الهطول المطري_الجريان السطحي اعتمادا على عدد من المتغيرات التي تؤثر بشكل فعال على الجريان السطحي، بما يتطلبه الأمر من الحفاظ على هذه الثروة الحيوية.
تعدّ النمذجة الدقيقة للعلاقة بين الهطول المطري_الجريان السطحي (Rainfall_Runoff) (R_R) مهمة معقدة جدّاً, على الرغم من حقل النمذجة الواسع الذي يشمل كلّاً من الطرائق الموجهة بالمعرفة و الطرائق الموجهة بالبيانات. تتطلب النماذج الموجهة بالمعرفة كمية ضخمة من البارامترات، و بالتالي فهي تعاني من تأثير كثرة البارامترات. هذا مايجعل العاملين في حقل النمذجة يبحثون عن طرائق نمذجة بسيطة تتطلب عدد قليل من البارامترات مثل الطرائق الموجهة بالبيانات, لذلك تهدف الدراسة الحالية إلى استخدام الشبكات العصبية الصنعية التي تعدّ إحدى أنواع هذه الطرائق لنمذجة العلاقة R_R في حوض نهر الكبير الجنوبي في محافظة طرطوس. حيث تمّ الاعتماد على شبكة Elman الصنعية للتنبؤ بالجريان السطحي باختبار أربعة و عشرين نموذجاً ذات معماريات مختلفة, كما تمّ اختبار كلّ نموذج باستخدام عدد مختلف من العصبونات الخفية, و ذلك باستخدام مكتبة nntool المتاحة في حزمة برمجيات Matlab. أثبتت نتائج هذه الدراسة أن النموذج الذي يحوي في طبقة المدخلات على كلٍّ من درجة الحرارة, الرطوبة النسبية, التبخر و الهطول المطري بتأخر زمني مقداره ثلاثة أيام (-3:0) إضافةً إلى قيم سابقة للتصريف بتأخر زمني (-3:-1) و مع استخدام 25 عصبون في الطبقة الخفية يعطي أفضل أداء بمتوسط مربع خطأ مقداره 2.8*10^-5, و معامل ارتباط 0.96 لمجموعة البيانات المستخدمة, تمّ التوصل إلى أنّ شبكات Elman تعطي نتائج جيدة في نمذجة العلاقة R_R و بالتالي يمكن اعتبارها بديلاً للطرائق التقليدية في نمذجة العلاقة R_R.
تستخدم الشبكة العصبية الصنعية طريقة تعلم استقرائي، و تتطلب بشكل عام أمثِلة لبيانات التدريب، بينما تستخدم الخوارزمية الجينية تعلم اقتطاعي، و تتطلب تابع هدف. لقد تمّ تنظيم التعاون بين هاتين التقانتين في دراستنا هذه بغرض تعزيز أداء كل تقانة من خلال بن اء نظام هجين منهما، عن طريق كتابة برمجيّة عامّة باستخدام برنامج MATLAB بغرض الاختيار الفعّال لمتحولات الدخل لعمليات التنبؤ، و أمثلة أوزان شبكة البيانات قيد الدراسة، و من ثمّ تطبيق هذه البرنامج على بيانات يوميّة، تمّ جمعها من حوض نهر الكبير الجنوبي هي (الهطول، التبخر، الحرارة، الرطوبة النسبية و الجريان النهري بتأخر زمني مقداره يوم واحد) بغرض التنبؤ بالجريان النهري.
يقع الحوض الساكب (السفرقية) على السفوح الغربية لسلسلة الجبال الساحلية، و تبلغ مساحته km2 132.58، و هو يشكّل جزءاً من الحوض الساكب لنهر الروس، و يبدأ مجرى النهر على ارتفاع 1200م، و تلتقي مجموعة روافد فتشكّل نهر الروس الذي يصبّ في البحر المتوسط. و شُيّ د سد صلاح الدين لتخزين 10 MCM على مجرى النهر عند موقع تلاقي نهر القرداحة مع نهر الشحادة. تهدف الدراسة إلى تحديد العلاقة بين الهطل المطري و الجريان السطحي في حوض السفرقية. و اعتمد البحث على التحليل الإحصائي لبيانات الهطل المطري و الجريان، و بيّنت الدراسة أنَّ الكمية الوسطية للهطل المطري السنوي تبلغ MCM 159.6، و الكميّة الوسطية للجريان السطحي تبلغ 9.4 MCM خلال فترة الدراسة (2012-2010 )، و من ثَمّ فإنّ قيمة عامل الجريان السطحي تبلغ 0.06؛ أي أنّ الفواقد المائية كبيرة جداً، و تمّ استنتاج علاقة رياضية تسمح بتقدير كميات الجريان السطحي اعتماداً على قيم الهطل، لما لذلك من أهمية في دراسة المشروعات المائية لتخزين المياه و إدارتها، و درء الفيضانات.
تهدف هذه الدراسة إلى تحديد العناصر المناخية الأكثر تأثيرا على علاقة الهطل - جريان لنهر الكبير الشمالي, باستخدام الشبكات العصبية الاصطناعية. حيث احتوت مدخلات الشبكات العصبية على الهطل المطري و التدفق في النهر, وفق تأخرات زمنية مختلفة, بالإضافة إلى هنص ر من العناصر المناخية في كل نموذج من النماذج, لتحديد النموذج الأفضل و الأكثر دقة.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا