تشكل طبقات الأعلاف إلى الأمام ثلثي معلمات نموذج المحولات، لكن دورها في الشبكة لا تزال غير مستكشفة.نظرا لأن طبقة الأعلاف إلى الأمام في نماذج اللغة المحولات تعمل كذكريات ذات قيمة رئيسية، حيث يرتبط كل مفتاح بأنماط نصية في أمثلة التدريب، وكل قيمة تحفز توزيعا على مفردات الناتج.تبين تجاربنا أن الأنماط المستفادة قابلة للتفسير بشري، وأن الطبقات المنخفضة تميل إلى التقاط أنماط ضحلة، في حين تعلم الطبقات العليا تلك الدلالية أكثر.تكمل القيم أنماط إدخال المفاتيح من خلال تحفيز توزيعات الإخراج التي تركز كتلة الاحتمالية على الرموز المرجح أن تظهر مباشرة بعد كل نمط، خاصة في الطبقات العليا.أخيرا، نوضح أن إخراج طبقة الأعلاف إلى الأمام هو تكوين ذكرياتها، والتي تم تنصيرها لاحقا في جميع طبقات النموذج عبر الاتصالات المتبقية لإنتاج توزيع الناتج النهائي.