في اللغويات الحسابية، فقد تبين أن الهياكل الهرمية تجعل نماذج اللغة (LMS) أكثر تشبه الإنسان. ومع ذلك، فإن الأدب السابق كان غير ملائم حول استراتيجية تحليل النماذج الهرمية. في هذه الورقة، قامنا بالتحقيق في ما إذا كانت الهياكل الهرمية تجعل LMS أكثر تشبه الإنسان، وإذا كان الأمر كذلك، ما هي استراتيجية التحليل أكثر منطقية. من أجل معالجة هذا السؤال، قمنا بتقييم ثلاثة LMS ضد أوقات القراءة البشرية باللغة اليابانية مع هياكل المتفرعة اليسرى في الرأس: ذاكرة طويلة الأجل الطويلة (LSTM) كطراز متتابع ونواسيب الشبكة العصبية المتكررة (RNNGS) مع أعلى إلى أسفل واستراتيجيات تحليل الركن الأيسر كنماذج هرمية. أظهرت النمذجة الحاسوبية لدينا أن RNNGS الركن الأيسر تفوقت على RNNGS و LSTM من أعلى إلى أسفل، مما يشير إلى أن هياكل التسلسل الهرمي واليسرى من المعقول أكثر منطقية أكثر من الأعلى إلى أسفل أو هندسة متسلسلة. بالإضافة إلى ذلك، سيتم مناقشة العلاقات بين المعقول المعرفي و (1) حيرة، (2) تحليل، و (III) بحجم شعاع.