استكشاف صعوبة المهمة لاستخراج علاقة ذات طلقة قليلة


الملخص بالعربية

يركز استخراج علاقات قليلة (FSRE) على الاعتراف بعلاقات جديدة من خلال التعلم مع مجرد حفنة من الحالات المشروح.تم اعتماد التعلم التلوي على نطاق واسع لمثل هذه المهمة، والتي تتدرب على إنشاء مهام قليلة من الرصاص بشكل عشوائي لتعلم تمثيلات بيانات عامة.على الرغم من النتائج المثيرة للإعجاب التي تحققت، لا تزال النماذج الحالية تؤدي دون التفاادم عند التعامل مع مهام FSRE الثابتة، حيث تكون العلاقات محببة ومتشابهة لبعضها البعض.نقول هذا إلى حد كبير لأن النماذج الحالية لا تميز المهام الثابتة من سهلة في عملية التعلم.في هذه الورقة، نقدم نهجا جديدا يعتمد على التعلم المتعاقل الذي يتعلم تمثيلات أفضل من خلال استغلال معلومات الملصقات العلاقة.نحن أيضا تصميم طريقة تسمح للنموذج بتعلم تكيف كيفية التركيز على المهام الثابتة.تجارب على مجموعة بيانات قياسية توضح فعالية طريقتنا.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث