لقد ظهرت وحدات محول كوسيلة فعالة من المعلمات لتخصص التشفير المسبق على المجالات الجديدة. استفادت محولات متعددة اللغات بشكل كبير (MMTS) بشكل خاص من التدريب الإضافي للمحولات الخاصة باللغة. ومع ذلك، فإن هذا النهج ليس قابلا للتطبيق بالنسبة للغالبية العظمى من اللغات، بسبب القيود في حجم الشقوق أو حساب الميزانيات. في هذا العمل، نقترح جنون G (جيل محول متعدد اللغات)، الذي يولد محولات لغة محلية من تمثيلات اللغة بناء على الميزات النموذجية. على عكس العمل السابق، يتيح نهجنا المجنون بوقتنا وفعال الفضاء (1) تبادل المعرفة اللغوية عبر اللغات و (2) استنتاج صفرية عن طريق توليد محولات لغة للغات غير المرئية. نحن نقيم بدقة جنون G في النقل الصفر - نقل عبر اللغات على علامة جزء من الكلام، وتحليل التبعية، والاعتراف كيان المسمى. أثناء تقديم (1) تحسين كفاءة ضبط الدقيقة (1) من خلال عامل حوالي 50 في تجاربنا)، (2) ميزانية معلمة أصغر، و (3) زيادة تغطية اللغة، لا تزال جنون جي تنافسية مع أساليب أكثر تكلفة للغة تدريب محول محدد في جميع اللوحة. علاوة على ذلك، فإنه يوفر فوائد كبيرة لغات الموارد المنخفضة، لا سيما في مهمة NER في لغات أفريقية منخفضة الموارد. أخيرا، نوضح أن أداء نقل جنون جي يمكن تحسينه عبر: (1) التدريب متعدد المصادر، أي، من خلال توليد ومجتمعة محولات لغات متعددة مع بيانات التدريب الخاصة بمهام المهام المتاحة؛ و (2) عن طريق مزيد من ضبط محولات جنون G للغات ولغات مع بيانات أحادية الأونلينغ.