نقدم تحسين الحالة المخفية (HSO)، وهي طريقة قائمة على التدرج لتحسين أداء نماذج لغة المحولات في وقت الاستدلال.على غرار التقييم الديناميكي (Krause et al.، 2018)، يقوم HSO بتحسين التدرج على احتمال تسجيل الدخول يعين نموذج اللغة لنص التقييم، ولكنه يستخدمه لتحديث الدول المخففة المخزنة مؤقتا بدلا من المعلمات النموذجية.نقوم باختبار HSO مع نماذج لغة محول XL و GPT-2، وإيجاد تحسن على مجموعات بيانات Wikitext-103 و PG-19 من حيث الحيرة، خاصة عند تقييم نموذج خارج توزيع التدريب الخاص به.نحن نوضح أيضا إمكانية تطبيق المصب من خلال إظهار المكاسب في إعداد تقييم القليل من القليل من القليل من القليل من الطوابق المتقدما مؤخرا، مرة أخرى دون أي معلمات إضافية أو بيانات تدريبية.