النمذجة المتنقلة المتسلسلة قوية هي مهمة أساسية في العالم الحقيقي حيث تكون المدخلات صاخبة في كثير من الأحيان. تحتوي المدخلات التي تم إنشاؤها عن المستخدمين والآلة على أنواع مختلفة من الضوضاء في شكل أخطاء إملائية، والأخطاء النحوية، وأخطاء التعرف على الأحرف، والتي تؤثر على مهام المصب وتأثر على الترجمة الشفوية للنصوص. في هذا العمل، نرتند بنية جديدة للتسلسل إلى التسلسل للكشف عن وتصحيح مختلف العالم الحقيقي والضوضاء الاصطناعية (هجمات الخصومة) من النصوص الإنجليزية. نحو ذلك اقترحنا بنية فك التشفير المعدلة التي تعتمد على المحولات التي تستخدم آلية Gating للكشف عن أنواع التصحيحات المطلوبة وبناء على تصحيح النصوص. تظهر النتائج التجريبية أن الهندسة المعمارية المصورة لدينا مع نماذج لغوية مدربة مسبقا تؤدي بشكل أفضل بشكل كبير إلى أن النظيرات غير الدائرين ونماذج تصحيح الأخطاء الأخرى غير المدرجة في تصحيح الأخطاء الإملائية والحدائية. التقييم الخارجي لنموذجنا على الترجمة الآلية (MT) ومهام التلخيص تظهر الأداء التنافسي للنموذج مقابل نماذج تسلسل تسلسل أخرى أخرى تحت المدخلات الصاخبة.