حققت أنظمة ربط الكيان (EL) نتائج مثيرة للإعجاب على المعايير القياسية بشكل أساسي بفضل التمثيلات السياقية المقدمة من نماذج اللغة المحددة مسبقا.ومع ذلك، لا تزال هذه الأنظمة تتطلب كميات ضخمة من البيانات - ملايين الأمثلة المسمى - في أفضل حالاتهم، مع أوقات تدريبية تتجاوز غالبا عدة أيام، خاصة عندما تتوفر موارد حسابية محدودة.في هذه الورقة، ننظر إلى كيفية استغلال التعرف على الكيان المسمى (ner) لتضييق الفجوة بين أنظمة EL المدربين على كميات عالية ومنخفضة من البيانات المسمى.وبشكل أكثر تحديدا، نوضح كيف وإلى أي مدى يمكن للنظام أن يستفيد نظام EL من NER لتعزيز تمثيلات كيانه، وتحسين اختيار المرشح، وحدد عينات سلبية أكثر فعالية وفرض قيود صلبة وناعمة على كيانات الإخراج.نطلق سراح البرامج ونقاط التفتيش النموذجية - في https://github.com/babelscape/ner4el.