لقد ظهر التعلم الناقض كطريقة لتعلم التمثيل القوي ويسهل العديد من المهام المصب المختلفة خاصة عندما تكون البيانات الخاضعة للإشراف محدودة. كيفية بناء عينات مضاءة فعالة من خلال تكبير البيانات هي مفتاح نجاحها. على عكس مهام الرؤية، لم يتم التحقيق في طريقة تكبير البيانات للتعلم المتعاقل بما فيه الكفاية في مهام اللغة. في هذه الورقة، نقترح نهج رواية لبناء عينات صغيرة لمهام اللغة باستخدام تلخيص النص. نحن نستخدم هذه العينات للتعلم المتعاقل الخاضع للإشراف للحصول على تمثيلات نصية أفضل التي تنفصل إلى حد كبير مهام تصنيف النص بشراحي محدود. لمزيد من تحسين الطريقة، نخلط عينات من فئات مختلفة وإضافة تنظيم إضافي، يدعى Mixsum، بالإضافة إلى فقدان الانتروبيا. توضح التجارب في مجموعات بيانات تصنيف النص العالمي الحقيقي (Amazon-5، YELP-5، AG News، IMDB) فعالية إطار التعلم المقاوم للضبط المقترح مع تكبير البيانات القائمة على التلخصات وانتظام Mixsum.