توفر الشبكات العصبية القائمة على المحولات أداء تصنيف جيد للغاية عبر مجموعة واسعة من المجالات، لكن لا تقدم تفسيرات توقعاتها.في حين أن العديد من طرق التفسير، بما في ذلك الشكل، فإن معالجة مشكلة تفسير نماذج التعلم العميق، لا تتكيف معها للعمل على الشبكات العصبية القائمة على أحدث الأحوال مثل بيرت.مقرر آخر لهذه الطرق هو أن تصور التفسيرات الخاصة بهم في شكل قوائم من الكلمات الأكثر صلة لا يأخذ في الاعتبار الطبيعة المتسلسلة والهيكلية للنص.تقترح هذه الورقة طريقة TransShap التي تتكيف مع النماذج المحول بما في ذلك مصنفات النص المستند إلى BERT.تتقدم تصورات الشكل من خلال إظهار التفسيرات بطريقة متتالية، وتقييمها من قبل المقيمين البشري كمنافسة للحلول الحديثة.