التدريب المتكامل لنماذج تسلسل إلى تسلسل باستخدام محول غير تلقائي


الملخص بالعربية

تطبيقات اللغة الطبيعية المعقدة مثل ترجمة الكلام أو الترجمة المحورية تعتمد تقليديا على النماذج المتتالية. ومع ذلك، من المعروف أن النماذج المتتالية عرضة لتوسيع الأخطاء ومشاكل التناقض النموذجي. علاوة على ذلك، لا توجد إمكانية لاستخدام بيانات التدريب المناسبة في النظم المتتالية التقليدية، مما يعني أن البيانات التدريبية الأكثر ملاءمة للمهمة لا يمكن استخدامها. اقترحت الدراسات الفقيرة عدة طرق تدريبية للتدريب المنتهي المتكاملة للتغلب عليها مشاكل، ومع ذلك، فإنهم يعتمدون في الغالب على بيانات ثلاثية الاتجاه (الاصطناعية أو الطبيعية). نقترح نموذجا متماثلا يعتمد على المحول غير التلقائي الذي يتيح التدريب المنتهي دون الحاجة إلى تمثيل واضح وسيط. تتجنب هذه الهندسة المعمارية الجديدة (I) القرارات المبكرة غير الضرورية التي يمكن أن تسبب أخطاء يتم نشرها بعد ذلك في جميع النماذج المتتالية (II) باستخدام بيانات التدريب المناسبة مباشرة. نحن نقوم بإجراء تقييم على مهام ترجمة من الآلة المحورية، وهي الفرنسية → الألمانية والألمانية → جمهورية التشيك. تظهر نتائجنا التجريبية أن الهندسة المعمارية المقترحة تعطي تحسنا أكثر من 2 بلو للفرنسية → الألمانية على خط الأساس المتتالي.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث