أصبحت الشبكات العصبية العميقة ونماذج اللغة الضخمة في كل شيء في تطبيقات اللغة الطبيعية. نظرا لأنهم معروفون بطلب كميات كبيرة من بيانات التدريب، فهناك مجموعة متنامية من العمل لتحسين الأداء في إعدادات الموارد المنخفضة. بدافع من التغييرات الأساسية الأخيرة نحو النماذج العصبية والطائرة المسبقة والتدريب الشائعة النغمات الجميلة، نقوم بمسح نهج واعدة لمعالجة اللغات الطبيعية المنخفضة الموارد. بعد مناقشة حول الأبعاد المختلفة لتوفر البيانات، نقدم نظرة عامة منظم على الطرق التي تمكن التعلم عند انتشار البيانات التدريبية. يشتمل ذلك على آليات لإنشاء بيانات إضافية مصممة مثل تكبير البيانات والإشراف البعيد بالإضافة إلى إعدادات التعلم التي تقلل من الحاجة إلى الإشراف المستهدف. الهدف من المسح لدينا هو شرح كيف تختلف هذه الطرق في متطلباتهم كضمين لهم ضروري لاختيار تقنية مناسبة لإعداد محدد من الموارد منخفضة. هناك جوانب رئيسية أخرى لهذا العمل هي تسليط الضوء على القضايا المفتوحة وإطلاع الإرشادات الواعدة للبحث في المستقبل.