حقق تعدين الرأي الرأي الدقيق (OM) جاذبية متزايدة في مجتمع معالجة اللغات الطبيعية (NLP)، والتي تهدف إلى إيجاد هياكل الرأي التي عبرت عن آرائها تجاه ما "في جملة واحدة. في هذا العمل، بدافع من تمثيلها المستندة إلى تعبيرات الرأي والأدوار، نقترح نهجا موحدا قائما على إعداد OM في نهاية إلى نهاية. علاوة على ذلك، مستوحاة من الشكليات الموحدة المستندة المستندة إلى OM و EM و Constitioning، نستكشف طريقتين مختلفتين (التعلم متعدد المهام والشبكة العصبية التنافيلية) لإدماج مكونات النحوية في النموذج المقترح للمساعدة OM. نحن نقوم بإجراء تجارب على DataSet MPQA 2.0 شائع الاستخدام. تظهر النتائج التجريبية أن نهجنا المقرر أن يحقق النهج المستند إليه التحسينات المهمة على الأعمال السابقة في درجة F1 الدقيقة ويقلل من عدد تعبيرات الرأي والأدوار المتوقعة بشكل خاطئ، يظهر فعالية طريقتنا. بالإضافة إلى ذلك، فإن دمج الناخبين النحوي يحقق تحسينات واعدة على أساس الأساس القوي المعزز من خلال تمثيلات الكلمات السياقية.