لبناء التطبيقات المستندة إلى التعلم في الآلات من أجل المجالات الحساسة مثل الطبية والقانونية، وما إلى ذلك حيث يحتوي النص الرقمي على معلومات خاصة، فإن عدم الكشف عن هويت النص مطلوب للحفاظ على الخصوصية. تسلسل العلامات، على سبيل المثال كما فعلت في التعرف على الكيان المسمى (NER) يمكن أن تساعد في الكشف عن المعلومات الخاصة. ومع ذلك، لتدريب نماذج العلامات على التسلسل، مبلغ كافية من البيانات المسمى مطلوبة ولكن بالنسبة لمجالات حساسة الخصوصية، لا يمكن أيضا مشاركة هذه البيانات المسمى مباشرة. في هذه الورقة، يمكننا التحقيق في تطبيق إطار الحفاظ على الخصوصية لمهام علامات التسلسل، وتحديدا NER. وبالتالي، فإننا نحلل إطارا لمهمة NER، التي تتضمن مستويين لحماية الخصوصية. أولا، نقوم بنشر إطار تعليمي (FLF) الموحد حيث لا يتم مشاركة البيانات المسمى مع الخادم المركزي بالإضافة إلى عملاء الأقران. ثانيا، نطبق الخصوصية التفاضلية (DP) أثناء التدريب النماذج في كل مثيل عميل. في حين أن كلا من تدابير الخصوصية مناسبة للنماذج التي تدرك الخصوصية، فإن تركيبة النتائج في النماذج غير المستقرة. لمعرفةنا، هذه هي الدراسة الأولى من نوعها على نماذج علامات تسلسل الإدراك في الخصوصية.