يتم تدريب معظم نماذج تقدير الجودة الحالية (QE) للترجمة الآلية وتقييمها في بيئة إشراف بالكامل تتطلب كميات كبيرة من بيانات التدريب المسمى. ومع ذلك، يمكن أن تكون الحصول على البيانات المسمى باهظة الثمن وتستغرق وقتا طويلا. بالإضافة إلى ذلك، قد تتعرض بيانات الاختبار التي سيتم التعرض لها نموذج QE المنشور قد تختلف عن بيانات التدريب الخاصة بها بطرق مهمة. على وجه الخصوص، غالبا ما يتم تصنيف عينات التدريب من خلال مجموعة واحدة أو مجموعة صغيرة من المعلقين، والتي قد تختلف تصورات جودة الترجمة واحتياجاتها بشكل كبير من هؤلاء المستخدمين النهائيين، الذين سيعملون التنبؤات في الممارسة العملية. وبالتالي، من المرغوب فيه أن تكون قادرا على التكيف مع نماذج QE بكفاءة إلى بيانات المستخدم الجديدة مع بيانات الإشراف المحدودة. لمعالجة هذه التحديات، نقترح نهجا لتعليم التعلم بايزي لتكييف نماذج QE لاحتياجات وتفضيلات كل مستخدم مع إشراف محدود. لتعزيز الأداء، فإننا نقترح كذلك امتدادا إلى نهج التعلم التلوي بايز بين الفنادق التي تستخدم نواة مصفوفة ذات قيمة لتعلم التلوي بايزي لتقدير الجودة. توضح التجارب المعنية ببيانات عدد متفاوت من المستخدمين والخصائص اللغوية أن نهج التعلم التلوي المقترح يقدم أداء تنبؤي محسن في كل من إعدادات الإشراف المحدودة والكامل.