ﻻ يوجد ملخص باللغة العربية
Teleportation may be taken as sending and extracting quantum information through quantum channels. In this report, it is shown that to get the maximal probability of exact teleportation through partially entangled quantum channels, the sender (Alice) need only to operate a measurement which satisfy an ``entanglement matching to this channel. An optimal strategy is also provided for the receiver (Bob) to extract the quantum information by adopting general evolutions.
We consider a generalized quantum teleportation protocol for an unknown qubit using non-maximally entangled state as a shared resource. Without recourse to local filtering or entanglement concentration, using standard Bell-state measurement and class
The monogamy inequality in terms of the concurrence, called the Coffman-Kundu-Wootters inequality [Phys. Rev. A {bf 61}, 052306 (2000)], and its generalization [T.J. Osborne and F. Verstraete, Phys. Rev. Lett. {bf 96}, 220503 (2006)] hold on general
Teleportation is a quantum information processes without classical counterparts, in which the sender can disembodied transfer unknown quantum states to the receiver. In probabilistic teleportation through a partial entangled quantum channel, the tran
As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum comp
We propose a method for quantum state transfer from one atom laser beam to another via an intermediate optical field, using Raman incoupling and outcoupling techniques. Our proposal utilises existing experimental technologies to teleport macroscopic