ترغب بنشر مسار تعليمي؟ اضغط هنا

Unified Expressions of Physical Fundamental Interactions and Variational Principles Based On The Quantitative Causal Principle

81   0   0.0 ( 0 )
 نشر من قبل Dr. Y. C. Huang
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. C. Huang




اسأل ChatGPT حول البحث

This paper has been withdrawn by the authors because the paper is largely revised and improved.



قيم البحث

اقرأ أيضاً

This paper has been withdrawn by the authors because the paper is largely revised and improved, and to appear in Mechanics Research Communications.
In terms of the quantitative causal principle, this paper obtains a general variational principle, gives unified expressions of the general, Hamilton, Voss, H{o}lder, Maupertuis-Lagrange variational principles of integral style, the invariant quantit ies of the general, Voss, H{o}lder, Maupertuis-Lagrange variational principles are given, finally the Noether conservation charges of the general, Voss, H{o}lder, Maupertuis-Lagrange variational principles are deduced, and the intrinsic relations among the invariant quantities and the Noether conservation charges of the all integral variational principles are achieved.
This paper presents the geometric setting of quantum variational principles and extends it to comprise the interaction between classical and quantum degrees of freedom. Euler-Poincare reduction theory is applied to the Schrodinger, Heisenberg and Wig ner-Moyal dynamics of pure states. This construction leads to new variational principles for the description of mixed quantum states. The corresponding momentum map properties are presented as they arise from the underlying unitary symmetries. Finally, certain semidirect-product group structures are shown to produce new variational principles for Diracs interaction picture and the equations of hybrid classical-quantum dynamics.
95 - Guang Ping He 2017
Unconditionally secure quantum bit commitment (QBC) was considered impossible. But the no-go proofs are based on the Hughston-Jozsa-Wootters (HJW) theorem (a.k.a. the Uhlmann theorem). Recently it was found that in high-dimensional systems, there exi st some states which can display a chaos effect in quantum steering, so that the attack strategy based on the HJW theorem has to require the capability of discriminating quantum states with very subtle difference, to the extent that is not allowed by the uncertainty principle. With the help of this finding, here we propose a simple QBC protocol which manages to evade the no-go proofs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا