ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Superposition of Parametrically Amplified Multiphoton Pure States whitin a Decoherence-Free Schroedinger-Cat Structure

54   0   0.0 ( 0 )
 نشر من قبل DE MARTINI Francesco
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The new process of quantum-injection into an optical parametric amplifier operating in entangled configuration is adopted to amplify into a large dimensionality spin 1/2 Hilbert space the quantum entanglement and superposition properties of the photon-couples generated by parametric down-conversion. The structure of the Wigner function and of the fields correlation functions shows a decoherence-free, multiphoton Schroedinger-cat behaviour of the emitted field which is largely detectable against the squeezed-vacuum noise. Furthermore, owing to its entanglement character, the system is found to exhibit multi-particle quantum nonseparability and Bell-type nonlocality properties. These relevant quantum features are analyzed for several travelling-wave optical configurations implying different input quantum-injection schemes



قيم البحث

اقرأ أيضاً

The high resilience to de-coherence shown by a recently discovered Macroscopic Quantum Superposition (MQS) involving a number of photons in excess of 5 x 10^4 motivates the present theoretical and numerical investigation. The results are placed in cl ose comparison with the properties of the well known MQS based on |alpha> states. The very critical decoherence properties of the latter MQS are found to be fully accounted for, in a direct a simple way, by a unique universal function: indeed a new property of the quantum coherent states.
We present the proposition of an experiment in which the multiphoton quantum superposition consisting of N= 10^5 particles generated by a quantum-injected optical parametric amplifier (QI-OPA), seeded by a single-photon belonging to an EPR entangled pair, is made to interact with a Mirror-BEC shaped as a Bragg interference structure. The overall process will realize a Macroscopic Quantum Superposition (MQS) involving a microscopic single-photon state of polarization entangled with the coherent macroscopic transfer of momentum to the BEC structure, acting in space-like separated distant places.
In this paper we detail some results advanced in a recent letter [Prado et al., Phys. Rev. Lett. 102 073008 (2009)] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a no nstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.
An interaction free evolving state of a closed bipartite system composed of two interacting subsystems is a generally mixed state evolving as if the interaction were a c-number. In this paper we find the characteristic equation of states possessing s imilar properties for a bipartite systems governed by a linear dynamical equation whose generator is sum of a free term and an interaction term. In particular in the case of a small system coupled to its environment, we deduce the characteristic equation of decoherence free states namely mixed states evolving as if the interaction term were effectively inactive. Several examples illustrate the applicability of our theory in different physical contexts.
The evolution of the Schr{o}dinger-cat states in a dissipative parametric amplifier is examined. The main tool in the analysis is the normally ordered characteristic function. Squeezing, photon-number distribution and reduced factorial moments are di scussed for the single- and compound-mode cases. Also the single-mode Wigner function is demonstrated. In addition to the decoherence resulting from the interaction with the environment (damped case) there are two sources which can cause such decoherence in the system even if it is completely isolated: these are the decay of the pump and the relative phases of the initial cat states. Furthermore, for the damped case there are two regimes, which are underdamped and overdamped. In the first (second) regime the signal mode or the idler mode collapses to a statistical mixture (thermal field).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا