ﻻ يوجد ملخص باللغة العربية
The new process of quantum-injection into an optical parametric amplifier operating in entangled configuration is adopted to amplify into a large dimensionality spin 1/2 Hilbert space the quantum entanglement and superposition properties of the photon-couples generated by parametric down-conversion. The structure of the Wigner function and of the fields correlation functions shows a decoherence-free, multiphoton Schroedinger-cat behaviour of the emitted field which is largely detectable against the squeezed-vacuum noise. Furthermore, owing to its entanglement character, the system is found to exhibit multi-particle quantum nonseparability and Bell-type nonlocality properties. These relevant quantum features are analyzed for several travelling-wave optical configurations implying different input quantum-injection schemes
The high resilience to de-coherence shown by a recently discovered Macroscopic Quantum Superposition (MQS) involving a number of photons in excess of 5 x 10^4 motivates the present theoretical and numerical investigation. The results are placed in cl
We present the proposition of an experiment in which the multiphoton quantum superposition consisting of N= 10^5 particles generated by a quantum-injected optical parametric amplifier (QI-OPA), seeded by a single-photon belonging to an EPR entangled
In this paper we detail some results advanced in a recent letter [Prado et al., Phys. Rev. Lett. 102 073008 (2009)] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a no
An interaction free evolving state of a closed bipartite system composed of two interacting subsystems is a generally mixed state evolving as if the interaction were a c-number. In this paper we find the characteristic equation of states possessing s
The evolution of the Schr{o}dinger-cat states in a dissipative parametric amplifier is examined. The main tool in the analysis is the normally ordered characteristic function. Squeezing, photon-number distribution and reduced factorial moments are di