ﻻ يوجد ملخص باللغة العربية
Quantum mechanical models and practical calculations often rely on some exactly solvable models like the Coulomb and the harmonic oscillator potentials. The $D$ dimensional generalized Coulomb potential contains these potentials as limiting cases, thus it establishes a continuous link between the Coulomb and harmonic oscillator potentials in various dimensions. We present results which are necessary for the utilization of this potential as a model and practical reference problem for quantum mechanical calculations. We define a Hilbert space basis, the generalized Coulomb-Sturmian basis, and calculate the Greens operator on this basis and also present an SU(1,1) algebra associated with it. We formulate the problem for the one-dimensional case too, and point out that the complications arising due to the singularity of the one-dimensional Coulomb problem can be avoided with the use of the generalized Coulomb potential.
A mapping is obtained relating radial screened Coulomb systems with low screening parameters to radial anharmonic oscillators in N-dimensional space. Using the formalism of supersymmetric quantum mechanics, it is shown that exact solutions of these p
The Levi-Civita transformation is applied in the two-dimensional (2D) Dirac and Klein-Gordon (KG) equations with equal external scalar and vector potentials. The Coulomb and harmonic oscillator problems are connected via the Levi-Civita transformatio
We explore the quantum Coulomb problem for two-body bound states, in $D=3$ and $D=3-2epsilon$ dimensions, in detail, and give an extensive list of expectation values that arise in the evaluation of QED corrections to bound state energies. We describe
We return to the description of the damped harmonic oscillator by means of a closed quantum theory with a general assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model recently proposed by one of the authors. W
A comparative study is performed on two heterodyne systems of photon detectors expressed in terms of a signal annihilation operator and an image band creation operator called Shapiro-Wagner and Caves frame, respectively. This approach is based on the