ﻻ يوجد ملخص باللغة العربية
Reversible simulation of irreversible algorithms is analyzed in the stylized form of a `reversible pebble game. While such simulations incur little overhead in additional computation time, they use a large amount of additional memory space during the computation. The reacheable reversible simulation instantaneous descriptions (pebble configurations) are characterized completely. As a corollary we obtain the reversible simulation by Bennett and that among all simulations that can be modelled by the pebble game, Bennetts simulation is optimal in that it uses the least auxiliary space for the greatest number of simulated steps. One can reduce the auxiliary storage overhead incurred by the reversible simulation at the cost of allowing limited erasing leading to an irreversibility-space tradeoff. We show that in this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. We show that the reversible simulation can be modified so that it is applicable also when the simulated computation time is unknown.
Classical reversible circuits, acting on $w$~bits, are represented by permutation matrices of size $2^w times 2^w$. Those matrices form the group P($2^w$), isomorphic to the symmetric group {bf S}$_{2^w}$. The permutation group P($n$), isomorphic to
The CHSH no-signalling game studies Bell nonlocality by showcasing a gap between the win rates of classical strategies, quantum-entangled strategies, and no-signalling strategies. Similarly, the CHSH* single-system game explores the advantage of irre
We study properties of quantum strategies, which are complete specifications of a given partys actions in any multiple-round interaction involving the exchange of quantum information with one or more other parties. In particular, we focus on a repres
Steganography (literally meaning covered writing) is the art and science of embedding secret message into seemingly harmless message. Stenography is practice from olden days where in ancient Greece people used wooden blocks to inscribe secret data an
We consider a model of quantum computation using qubits where it is possible to measure whether a given pair are in a singlet (total spin $0$) or triplet (total spin $1$) state. The physical motivation is that we can do these measurements in a way th