ﻻ يوجد ملخص باللغة العربية
To characterize the novel quantum phase transition for a hybrid system consisting of an array of coupled cavities and two-level atoms doped in each cavity, we study the atomic entanglement and photonic visibility in comparison with the quantum fluctuation of total excitations. Analytical and numerical simulation results show the happen of quantum critical phenomenon similar to the Mott insulator to superfluid transition. Here, the contour lines respectively representing the atomic entanglement, photonic visibility and excitation variance in the phase diagram are consistent in the vicinity of the non-analytic locus of atomic concurrences.
Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to $
The key to explaining a wide range of quantum phenomena is understanding how entanglement propagates around many-body systems. Furthermore, the controlled distribution of entanglement is of fundamental importance for quantum communication and computa
Nitrogen vacancy (NV) centres in diamond are attractive as quantum sensors owing to their superb coherence under ambient conditions. However, the NV centre spin resonances are relatively insensitive to some important parameters such as temperature. H
We introduce the concept of embedding quantum simulators, a paradigm allowing the efficient quantum computation of a class of bipartite and multipartite entanglement monotones. It consists in the suitable encoding of a simulated quantum dynamics in t
Realization of strong optomechanical coupling in the single-photon level is crucial to study quantum nonlinear effects and manipulate macroscopic object. Here, we propose an alternative method to towards this goal in a hybrid ensemble-optomechanical