ﻻ يوجد ملخص باللغة العربية
We propose a method to produce a definite number of ground-state atoms by adiabatic reduction of the depth of a potential well that confines a degenerate Bose gas with repulsive interactions. Using a variety of methods, we map out the maximum number of particles that can be supported by the well as a function of the well depth and interaction strength, covering the limiting case of a Tonks gas as well as the mean-field regime. We also estimate the time scales for adiabaticity and discuss the recent observation of atomic number squeezing (Chuu et al., Phys. Rev. Lett. {bf 95}, 260403 (2005)).
Certain wave functions of non-interacting quantum chaotic systems can exhibit scars in the fabric of their real-space density profile. Quantum scarred wave functions concentrate in the vicinity of unstable periodic classical trajectories. We introduc
Quantum batteries are quantum mechanical systems with many degrees of freedom which can be used to store energy and that display fast charging. The physics behind fast charging is still unclear. Is this just due to the collective behavior of the unde
We analyse the properties of the synchronisation transition in a many-body system consisting of quantum van der Pol oscillators with all-to-all coupling using a self-consistent mean-field method. We find that the synchronised state, which the system
Achieving high-precision detection of time-dependent signals in noisy environment is a ubiquitous issue in physics and a critical task in metrology. Lock-in amplifiers are detectors that can extract alternating signals with a known carrier frequency
The spectral form factor (SFF), characterizing statistics of energy eigenvalues, is a key diagnostic of many-body quantum chaos. In addition, partial spectral form factors (pSFFs) can be defined which refer to subsystems of the many-body system. They