ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Gravitational Wave - An Application of Relativistic Quantum Information Theory

109   0   0.0 ( 0 )
 نشر من قبل Ye Yeo
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a passing gravitational wave may influence the spin entropy and spin negativity of a system of $N$ massive spin-1/2 particles, in a way that is characteristic of the radiation. We establish the specific conditions under which this effect may be nonzero. The change in spin entropy and negativity, however, is extremely small. Here, we propose and show that this effect may be amplified through entanglement swapping. Relativistic quantum information theory may have a contribution towards the detection of gravitational wave.



قيم البحث

اقرأ أيضاً

Optomechanical interaction can be a platform for converting quantum optical sates at different frequencies. In this work, we propose to combine the idea of optomechanical frequency conversion and the dual-use of laser interferometer, for the purpose of improving the broadband sensitivity of laser interferometer gravitational wave detectors by filtering the light field. We found that compare to the previous schemes of implementing the optomechanical devices in gravitational wave detectors, this frequency converter scheme will have less stringent requirement on the thermal noise dilution.
In this paper, a method is developed to investigate the relativistic quantum information of anyons. Anyons are particles with intermediate statistics ranging between Bose-Einstein and Fermi-Dirac statistics, with a parameter $alpha$ ($0<alpha<1$) cha racteristic of this intermediate statistics. A density matrix is also introduced as a combination of the density matrices of bosons and fermions with a continuous parameter, $alpha$, that represents the behavior of anyons. This density matrix reduces to bosonic and fermionic density matrices in the limits $alpharightarrow 0$ and $alpharightarrow 1$,respectively. We compute entanglement entropy, negativity, and coherency for anyons in non-inertial frames as a function of $alpha$. We also computed quantum fisher information for these particles. Semions, which are particles with $alpha = 0.5$, were found to have minimum quantum fisher information with respect to $alpha$ than those with other values of fractional parameter.
The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kil ometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of Standard Quantum Limit and the methods of its surmounting.
We prove decomposition rules for quantum Renyi mutual information, generalising the relation $I(A:B) = H(A) - H(A|B)$ to inequalities between Renyi mutual information and Renyi entropy of different orders. The proof uses Beigis generalisation of Reis z-Thorin interpolation to operator norms, and a variation of the argument employed by Dupuis which was used to show chain rules for conditional Renyi entropies. The resulting decomposition rule is then applied to establish an information exclusion relation for Renyi mutual information, generalising the original relation by Hall.
Recent progress in electro-optic sampling has allowed direct access to the fluctuations of the electromagnetic ground state. Here, we present a theoretical formalism that allows for an in-depth characterisation and interpretation of such quantum-vacu um detection experiments by relating their output statistics to the quantum statistics of the electromagnetic vacuum probed. In particular, we include the effects of absorption, dispersion and reflections from general environments. Our results agree with available experimental data while leading to significant corrections to previous theoretical predictions and generalises them to new parameter regimes. Our formalism opens the door for a detailed experimental analysis of the different characteristics of the polaritonic ground state, e.g. we show that transverse (free-field) as well as longitudinal (matter or near-field) fluctuations can be accessed individually by tuning the experimental parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا