ترغب بنشر مسار تعليمي؟ اضغط هنا

Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime

98   0   0.0 ( 0 )
 نشر من قبل Guoqiang Cui
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive analytical formulas for the forward emission and side emission spectra of cavity-modified single-photon sources, as well as the corresponding normal-mode oscillations in the cavity quantum electrodynamics (QED) strong-coupling regime. We investigate the effects of pure dephasing, treated in the phase-diffusion model based on a Wiener-Levy process, on the emission spectra and normal-mode oscillations. We also extend our previous calculation of quantum efficiency to include the pure dephasing process. All results are obtained in the Weisskopf-Wigner approximation for an impulse-excited emitter. We find that the spectra are broadened, the depths of the normal-mode oscillations are reduced and the quantum efficiency is decreased in the presence of pure dephasing.



قيم البحث

اقرأ أيضاً

A quantum dipole interacting with an optical cavity is one of the key models in cavity quantum electrodynamics (cavity-QED). To treat this system theoretically, the typical approach is to truncate the dipole to two levels. However, it has been shown that in the ultrastrong-coupling regime, this truncation naively destroys gauge invariance. By truncating in a manner consistent with the gauge principle, we introduce master equations to compute gauge-invariant emission spectra and quantum correlation functions which show significant disagreement with previous results obtained using the standard quantum Rabi model, with quantitative differences already present in the strong coupling regime. Explicit examples are shown using both the dipole gauge and the Coulomb gauge.
We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system. We show that the probability for the additional photon to be emitted by the opto-mechanical cavity will exhibit oscillations under a Lorentzian envelope, when the driven interaction with the mechanical resonator is strong enough. Our scheme provides a feasible route towards quantum state transfer between optical photons and micromechanical resonators.
The strong-coupling regime of cavity-quantum-electrodynamics (cQED) represents light-matter interaction at the fully quantum level. Adding a single photon shifts the resonance frequencies, a profound nonlinearity. cQED is a test-bed of quantum optics and the basis of photon-photon and atom-atom entangling gates. At microwave frequencies, success in cQED has had a transformative effect. At optical frequencies, the gates are potentially much faster and the photons can propagate over long distances and be easily detected, ideal features for quantum networks. Following pioneering work on single atoms, solid-state implementations are important for developing practicable quantum technology. Here, we embed a semiconductor quantum dot in a microcavity. The microcavity has a $mathcal{Q}$-factor close to $10^{6}$ and contains a charge-tunable quantum dot with close-to-transform-limited optical linewidth. The exciton-photon coupling rate $g$ exceeds both the photon decay rate $kappa$ and exciton decay rate $gamma$ by a large margin ($g/gamma=14$, $g/kappa=5.3$); the cooperativity is $C=2g^{2}/(gamma kappa)=150$, the $beta$-factor 99.7%. We observe pronounced vacuum Rabi oscillations in the time-domain, photon blockade at a one-photon resonance, and highly bunched photon statistics at a two-photon resonance. We use the change in photon statistics as a sensitive spectral probe of transitions between the first and second rungs of the Jaynes-Cummings ladder. All experiments can be described quantitatively with the Jaynes-Cummings model despite the complexity of the solid-state environment. We propose this system as a platform to develop optical-cQED for quantum technology, for instance a photon-photon entangling gate.
Hybrid quantum systems based on spin ensembles coupled to superconducting microwave cavities are promising candidates for robust experiments in cavity quantum electrodynamics (QED) and for future technologies employing quantum mechanical effects. Cur rently the main source of decoherence in these systems is inho- mogeneous spin broadening, which limits their performance for the coherent transfer and storage of quantum information. Here we study the dynamics of a superconducting cavity strongly coupled to an ensemble of nitrogen-vacancy centers in diamond. We experimentally observe for the first time, how decoherence induced by a non-Lorentzian spin distribution can be suppressed in the strong-coupling regime - a phenomenon known as cavity protection. To demonstrate the potential of this effect for coherent control schemes, we show how appropriately chosen microwave pulses can increase the amplitude of coherent oscillations between cavity and spin ensemble by two orders of magnitude.
148 - S. Hughes , C. Roy 2011
We present a semiconductor master equation technique to study the input/output characteristics of coherent photon transport in a semiconductor waveguide-cavity system containing a single quantum dot. We use this approach to investigate the effects of photon propagation and anharmonic cavity-QED for various dot-cavity interaction strengths, including weakly-coupled, intermediately-coupled, and strongly-coupled regimes. We demonstrate that for mean photon numbers much less than 0.1, the commonly adopted weak excitation (single quantum) approximation breaks down, even in the weak coupling regime. As a measure of the anharmonic multiphoton-correlations, we compute the Fano factor and the correlation error associated with making a semiclassical approximation. We also explore the role of electron--acoustic-phonon scattering and find that phonon-mediated scattering plays a qualitatively important role on the light propagation characteristics. As an application of the theory, we simulate a conditional phase gate at a phonon bath temperature of $20 $K in the strong coupling regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا