ﻻ يوجد ملخص باللغة العربية
The architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) for long-distance quantum communication with atomic ensembles is analyzed. Its fidelity and throughput in entanglement distribution, entanglement swapping, and quantum teleportation is derived within a framework that accounts for multiple excitations in the ensembles as well as loss and asymmetries in the channel. The DLCZ performance metrics that are obtained are compared to the corresponding results for the trapped-atom quantum communication architecture that has been proposed by a team from the Massachusetts Institute of Technology and Northwestern University (MIT/NU). Both systems are found to be capable of high-fidelity entanglement distribution. However, the DLCZ scheme only provides conditional teleportation and repeater operation, whereas the MIT/NU architecture affords full Bell-state measurements on its trapped atoms. Moreover, it is shown that achieving unity conditional fidelity in DLCZ teleportation and repeater operation requires ideal photon-number resolving detectors. The maximum conditional fidelities for DLCZ teleportation and repeater operation that can be realized with non-resolving detectors are 1/2 and 2/3, respectively.
Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (>1000km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance.
We propose a scheme for long-distance quantum communication where the elementary entanglement is generated through two-photon interference and quantum swapping is performed through one-photon interference. Local polarization maximally entangled state
High-quality long-distance entanglement is essential for both quantum communication and scalable quantum networks. Entanglement purification is to distill high-quality entanglement from low-quality entanglement in a noisy environment and it plays a k
This paper has been withdrawn by the authors, due a oversimplified decoherence model. It will be substituted by a new work.
Based on the interaction between a three-level system and a microtoroidal resonator, we present a scheme for long-distance quantum communication in which entanglement generation with near 0.5 success probability and swaps can be implemented by accura