ﻻ يوجد ملخص باللغة العربية
Guided Acoustic Wave Brillouin Scattering (GAWBS) generates phase and polarization noise of light propagating in glass fibers. This excess noise affects the performance of various experiments operating at the quantum noise limit. We experimentally demonstrate the reduction of GAWBS noise in a photonic crystal fiber in a broad frequency range using cavity sound dynamics. We compare the noise spectrum to the one of a standard fiber and observe a 10-fold noise reduction in the frequency range up to 200 MHz. Based on our measurement results as well as on numerical simulations we establish a model for the reduction of GAWBS noise in photonic crystal fibers.
By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an in
We investigate intermodal forward Brillouin scattering in a solid-core PCF, demonstrating efficient power conversion between the HE11 and HE21 modes, with a maximum gain coefficient of 21.4/W/km. By exploring mechanical modes of different symmetries,
Here we identify a new form of optomechanical coupling in gas-filled hollow-core fibers. Stimulated forward Brillouin scattering is observed in air in the core of a photonic bandgap fiber. A single resonance is observed at 35 MHz, which corresponds t
Microwave photonic systems are compelling for their ability to process signals at high frequencies and over extremely wide bandwidths as a basis for next generation communication and radar technologies. However, many applications also require narrow-
Realizing highly sensitive interferometry is essential to accurate observation of quantum properties. Here we study two kinds of Ramsey interference fringes in a whispering-gallery resonator, where the coherent phonons for free evolution can be achie