ﻻ يوجد ملخص باللغة العربية
An array of planar Penning traps, holding single electrons, can realize an artificial molecule suitable for NMR-like quantum information processing. The effective spin-spin coupling is accomplished by applying a magnetic field gradient, combined to the Coulomb interaction acting between the charged particles. The system lends itself to scalability, since the same substrate can easily accommodate an arbitrary number of traps. Moreover, the coupling strength is tunable and under experimental control. Our theoretical predictions take into account a realistic setting, within the reach of current technology.
We propose a scheme to engineer an effective spin Hamiltonian starting from a system of electrons confined in micro-Penning traps. By means of appropriate sequences of electromagnetic pulses, alternated to periods of free evolution, we control the sh
We propose the use of 2-dimensional Penning trap arrays as a scalable platform for quantum simulation and quantum computing with trapped atomic ions. This approach involves placing arrays of micro-structured electrodes defining static electric quadru
Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoi
This review article describes the trapping of charged particles. The main principles of electromagnetic confinement of various species from elementary particles to heavy atoms are briefly described. The preparation and manipulation with trapped singl
We propose a quantum algorithm for inferring the molecular nuclear spin Hamiltonian from time-resolved measurements of spin-spin correlators, which can be obtained via nuclear magnetic resonance (NMR). We focus on learning the anisotropic dipolar ter