ﻻ يوجد ملخص باللغة العربية
Weak measurements are a new tool for characterizing post-selected quantum systems during their evolution. Weak measurement was originally formulated in terms of von Neumann interactions which are practically available for only the simplest single-particle observables. In the present work, we extend and greatly simplify a recent, experimentally feasible, reformulation of weak measurement for multiparticle observables [Resch and Steinberg (2004, Phys. Rev. Lett., 92, 130402)]. We also show that the resulting ``joint weak values take on a particularly elegant form when expressed in terms of annihilation operators.
Weak value measurements have recently given rise to a large interest for both the possibility of measurement amplification and the chance of further quantum mechanics foundations investigation. In particular, a question emerged about weak values bein
We demonstrate that Aharonov-Albert-Vaidman (AAV) weak values have a direct relationship with the response function of a system, and have a much wider range of applicability in both the classical and quantum domains than previously thought. Using thi
The time-symmetric formalism endows the weak measurement and its outcome, the weak value, many unique features. In particular, it allows a direct tomography of quantum states without resort to complicated reconstruction algorithms and provides an ope
Weak measurement is a new technique which allows one to describe the evolution of postselected quantum systems. It appears to be useful for resolving a variety of thorny quantum paradoxes, particularly when used to study properties of pairs of partic
Incompatible observables underlie pillars of quantum physics such as contextuality and entanglement. The Heisenberg uncertainty principle is a fundamental limitation on the measurement of the product of incompatible observables, a `joint measurement.