ﻻ يوجد ملخص باللغة العربية
Favored schemes for trapped-ion quantum logic gates use bichromatic laser fields to couple internal qubit states with external motion through a spin-dependent force. We introduce a new degree of freedom in this coupling that reduces its sensitivity to phase decoherence. We demonstrate bichromatic spin-dependent forces on a single trapped $^{111}$Cd$^+$ ion, and show that phase coherence of the resulting Schr{o}dinger-cat states of motion depends critically upon the spectral arrangement of the optical fields. This applies directly to the operation of entangling gates on multiple ions.
We implement faster-than-adiabatic two-qubit phase gates using smooth state-dependent forces. The forces are designed to leave no final motional excitation, independently of the initial motional state in the harmonic, small-oscillations limit. They a
Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can
Individual electrodynamically trapped and laser cooled ions are addressed in frequency space using radio-frequency radiation in the presence of a static magnetic field gradient. In addition, an interaction between motional and spin states induced by
We study the dynamics of Rydberg ions trapped in a linear Paul trap, and discuss the properties of ionic Rydberg states in the presence of the static and time-dependent electric fields constituting the trap. The interactions in a system of many ions
We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion