ﻻ يوجد ملخص باللغة العربية
We develop a theory to analyze the decoherence effect in a charged qubit array system with photon echo signals in the multiwave mixing configuration. We present how the decoherence suppression effect by the {it bang-bang} control with the $pi$ pulses can be demonstrated in laboratory by using a bulk ensemble of exciton qubits and optical pulses whose pulse area is even smaller than $pi$. Analysis is made on the time-integated multiwave mixing signals diffracted into certain phase matching directions from a bulk ensemble. Depending on the pulse interval conditions, the cross over from the decoherence acceleration regime to the decoherence suppression regime, which is a peculiar feature of the coherent interaction between a qubit and the reservoir bosons, may be observed in the time-integated multiwave mixing signals in the realistic case including inhomogeneous broadening effect. Our analysis will successfully be applied to precise estimation of the reservoir parameters from experimental data of the direction resolved signal intensities obtained in the multiwave mixing technique.
We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamateria
We develop a systematic method of performing corrected gate operations on an array of exchange-coupled singlet-triplet qubits in the presence of both fluctuating nuclear Overhauser field gradients and charge noise. The single-qubit control sequences
In this paper, we consider the decoherence patterns of a topological qubit made of two Majorana zero modes in the generic linear and circular motions in the Minkowski spacetime. We show that the reduced dynamics is exact without Markov approximation.
As the number of qubits in nascent quantum processing units increases, the connectorized RF (radio frequency) analog circuits used in first generation experiments become exceedingly complex. The physical size, cost and electrical failure rate all bec
In this letter, we present an experimental benchmark of operational control methods in quantum information processors extended up to 12 qubits. We implement universal control of this large Hilbert space using two complementary approaches and discuss