ﻻ يوجد ملخص باللغة العربية
I show how probabilities arise in quantum physics by exploring implications of {it environment - assisted invariance} or {it envariance}, a recently discovered symmetry exhibited by entangled quantum systems. Envariance of perfectly entangled ``Bell-like states can be used to rigorously justify complete ignorance of the observer about the outcome of any measurement on either of the members of the entangled pair. For more general states, envariance leads to Borns rule, $p_k propto |psi_k|^2$ for the outcomes associated with Schmidt states. Probabilities derived in this manner are an objective reflection of the underlying state of the system -- they represent experimentally verifiable symmetries, and not just a subjective ``state of knowledge of the observer. Envariance - based approach is compared with and found superior to pre-quantum definitions of probability including the {it standard definition} based on the `principle of indifference due to Laplace, and the {it relative frequency approach} advocated by von Mises. Implications of envariance for the interpretation of quantum theory go beyond the derivation of Borns rule: Envariance is enough to establish dynamical independence of preferred branches of the evolving state vector of the composite system, and, thus, to arrive at the {it environment - induced superselection (einselection) of pointer states}, that was usually derived by an appeal to decoherence. Envariant origin of Borns rule for probabilities sheds a new light on the relation between ignorance (and hence, information) and the nature of quantum states.
The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and
It is shown that Schrodingers equation and Borns rule are sufficient to ensure that the states of macroscopic collective coordinate subsystems are microscopically localized in phase space and that the localized state follows the classical trajectory
Modern experiments using nanoscale devices come ever closer to bridging the divide between the quantum and classical realms, bringing experimental tests of objective collapse theories that propose alterations to Schr{o}dingers equation within reach.
In Mod. Phys. Lett. A 9, 3119 (1994), one of us (R.D.S) investigated a formulation of quantum mechanics as a generalized measure theory. Quantum mechanics computes probabilities from the absolute squares of complex amplitudes, and the resulting inter
We present a new experimental approach using a three-path interferometer and find a tighter empirical upper bound on possible violations of Borns Rule. A deviation from Borns rule would result in multi-order interference. Among the potential systemat